46 research outputs found

    Iliac fixation inhibits migration of both suprarenal and infrarenal aortic endografts

    Get PDF
    ObjectiveTo evaluate the role of iliac fixation in preventing migration of suprarenal and infrarenal aortic endografts.MethodsQuantitative image analysis was performed in 92 patients with infrarenal aortic aneurysms (76 men and 16 women) treated with suprarenal (n = 36) or infrarenal (n = 56) aortic endografts from 2000 to 2004. The longitudinal centerline distance from the superior mesenteric artery to the top of the stent graft was measured on preoperative, postimplantation, and 1-year three-dimensional computed tomographic scans, with movement more than 5 mm considered to be significant. Aortic diameters were measured perpendicular to the centerline axis. Proximal and distal fixation lengths were defined as the lengths of stent-graft apposition to the aortic neck and the common iliac arteries, respectively.ResultsThere were no significant differences in age, comorbidities, or preoperative aneurysm size (suprarenal, 6.0 cm; infrarenal, 5.7 cm) between the suprarenal and infrarenal groups. However, the suprarenal group had less favorable aortic necks with a shorter length (13 vs 25 mm; P < .0001), a larger diameter (27 vs 24 mm; P < .0001), and greater angulation (19° vs 11°; P = .007) compared with the infrarenal group. The proximal aortic fixation length was greater in the suprarenal than in the infrarenal group (22 vs 16 mm; P < .0001), with the top of the device closer to the superior mesenteric artery (8 vs 21 mm; P < .0001) as a result of the 15-mm uncovered suprarenal stent. There was no difference in iliac fixation length between the suprarenal and infrarenal groups (26 vs 25 mm; P = .8). Longitudinal centerline stent graft movement at 1 year was similar in the suprarenal and infrarenal groups (4.3 ± 4.4 mm vs 4.8 ± 4.3 mm; P = .6). Patients with longitudinal centerline movement of more than 5 mm at 1 year or clinical evidence of migration at any time during the follow-up period comprised the respective migrator groups. Suprarenal migrators had a shorter iliac fixation length (17 vs 29 mm; P = .006) and a similar aortic fixation length (23 vs 22 mm; P > .999) compared with suprarenal nonmigrators. Infrarenal migrators had a shorter iliac fixation length (18 vs 30 mm; P < .0001) and a similar aortic fixation length (14 vs 17 mm; P = .1) compared with infrarenal nonmigrators. Nonmigrators had closer device proximity to the hypogastric arteries in both the suprarenal (7 vs 17 mm; P = .009) and infrarenal (8 vs 24 mm; P < .0001) groups. No migration occurred in either group in patients with good iliac fixation. Multivariate logistic regression analysis revealed that iliac fixation, as evidenced by iliac fixation length (P = .004) and the device to hypogastric artery distance (P = .002), was a significant independent predictor of migration, whereas suprarenal or infrarenal treatment was not a significant predictor of migration. During a clinical follow-up period of 45 ± 22 months (range, 12-70 months), there have been no aneurysm ruptures, abdominal aortic aneurysm–related deaths, or surgical conversions in either group.ConclusionsDistal iliac fixation is important in preventing migration of both suprarenal and infrarenal aortic endografts that have longitudinal columnar support. Secure iliac fixation minimizes the risk of migration despite suboptimal proximal aortic neck anatomy. Extension of both iliac limbs to cover the entire common iliac artery to the iliac bifurcation seems to prevent endograft migration

    COMPUTATIONAL MODELLING OF OPTOGENETICS IN CARDIAC CELLS

    No full text
    ABSTRACT Channelrhodopsin-2 (ChR2) is a light-activated ion channel that can allow scientists to electrically activate cells via optical stimulation. Using a combination of existing computational electrophysiological and mechanical cardiac cell models with a novel ChR2 ion channel model, we created a model for ChR2-transduced cardiac myocytes. We implemented this model into a commonly available finite element platform and simulated both the single cell and the tissue electromechanical response. Our simulations show that it is possible to stimulate cardiac tissue optically with ChR2-transduced cells. INTRODUCTION Recent experiments [1] with cell types transduced with Channelrhodopsin-2 (ChR2) have shown great promise in using light-activated genetic modification to control different electrically active cell types. Optogenetic cardiac cells can allow for optical stimulation of cardiac tissues and may potentially serve as pacemakers in the heart. While ChR2-modified cells have not been used as pacemakers thus far, characterization of the ChR2 ion channe

    A generic approach towards finite growth with examples of athlete's heart, cardiac dilation, and cardiac wall thickening

    No full text
    The objective of this work is to establish a generic continuum-based computational concept for finite growth of living biological tissues. The underlying idea is the introduction of an incompatible growth configuration which naturally introduces a multiplicative decomposition of the deformation gradient into an elastic and a growth part. The two major challenges of finite growth are the kinematic characterization of the growth tensor and the identification of mechanical driving forces for its evolution. Motivated by morphological changes in cell geometry, we illustrate a micromechanically motivated ansatz for the growth tensor for cardiac tissue that can capture both strain-driven ventricular dilation and stress-driven wall thickening. Guided by clinical observations, we explore three distinct pathophysiological cases: athlete's heart, cardiac dilation, and cardiac wall thickening. We demonstrate the computational solution of finite growth within a fully implicit incremental iterative Newton-Raphson based finite element solution scheme. The features of the proposed approach are illustrated and compared for the three different growth pathologies in terms of a generic bi-ventricular heart model

    A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis

    No full text
    We present a novel computational model for maladaptive cardiac growth in which kinematic changes of the cardiac chambers are attributed to alterations in cytoskeletal architecture and in cellular morphology. We adopt the concept of finite volume growth characterized through the multiplicative decomposition of the deformation gradient into an elastic part and a growth part. The functional form of its growth tensor is correlated to sarcomerogenesis, the creation and deposition of new sarcomere units. In response to chronic volume-overload, an increased diastolic wall strain leads to the addition of sarcomeres in series, resulting in a relative increase in cardiomyocyte length, associated with eccentric hypertrophy and ventricular dilation. In response to chronic pressure-overload, an increased systolic wall stress leads to the addition of sacromeres in parallel, resulting in a relative increase in myocyte cross sectional area, associated with concentric hypertrophy and ventricular wall thickening. The continuum equations for both forms of maladaptive growth are discretized in space using a nonlinear finite element approach, and discretized in time using the implicit Euler backward scheme. We explore a generic bi-ventricular heart model in response to volume- and pressure-overload to demonstrate how local changes in cellular morphology translate into global alterations in cardiac form and function

    Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Get PDF
    Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance treatment for patients with ill proportioned limbs, tendon lengthening, tendon transfer, tendon tear, and chronically retracted muscles

    Superficial femoral artery transposition repair for isolated superior mesenteric artery dissection

    Get PDF
    Isolated dissection of the superior mesenteric artery is an uncommon event, but many new cases have been reported recently, reflecting the progress of imaging and suggesting that this pathology is not as rare as previously thought. Here we report a case of superior mesenteric artery dissection where we performed, after failure of conservative medical management, an original surgical technique for mesenteric revascularization using a superficial femoral artery transposition. To the best of our knowledge, this is the first report of the use of this technique for complex mesenteric revascularization
    corecore