54 research outputs found

    A biomarker-stratified comparison of top-down versus accelerated step-up treatment strategies for patients with newly diagnosed Crohn's disease (PROFILE):a multicentre, open-label randomised controlled trial

    Get PDF
    Background: Management strategies and clinical outcomes vary substantially in patients newly diagnosed with Crohn's disease. We evaluated the use of a putative prognostic biomarker to guide therapy by assessing outcomes in patients randomised to either top-down (ie, early combined immunosuppression with infliximab and immunomodulator) or accelerated step-up (conventional) treatment strategies. Methods: PROFILE (PRedicting Outcomes For Crohn's disease using a moLecular biomarker) was a multicentre, open-label, biomarker-stratified, randomised controlled trial that enrolled adults with newly diagnosed active Crohn's disease (Harvey-Bradshaw Index ≥7, either elevated C-reactive protein or faecal calprotectin or both, and endoscopic evidence of active inflammation). Potential participants had blood drawn to be tested for a prognostic biomarker derived from T-cell transcriptional signatures (PredictSURE-IBD assay). Following testing, patients were randomly assigned, via a secure online platform, to top-down or accelerated step-up treatment stratified by biomarker subgroup (IBDhi or IBDlo), endoscopic inflammation (mild, moderate, or severe), and extent (colonic or other). Blinding to biomarker status was maintained throughout the trial. The primary endpoint was sustained steroid-free and surgery-free remission to week 48. Remission was defined by a composite of symptoms and inflammatory markers at all visits. Flare required active symptoms (HBI ≥5) plus raised inflammatory markers (CRP &gt;upper limit of normal or faecal calprotectin ≥200 μg/g, or both), while remission was the converse—ie, quiescent symptoms (HBI &lt;5) or resolved inflammatory markers (both CRP ≤ the upper limit of normal and calprotectin &lt;200 μg/g) or both. Analyses were done in the full analysis (intention-to-treat) population. The trial has completed and is registered (ISRCTN11808228). Findings: Between Dec 29, 2017, and Jan 5, 2022, 386 patients (mean age 33·6 years [SD 13·2]; 179 [46%] female, 207 [54%] male) were randomised: 193 to the top-down group and 193 to the accelerated step-up group. Median time from diagnosis to trial enrolment was 12 days (range 0–191). Primary outcome data were available for 379 participants (189 in the top-down group; 190 in the accelerated step-up group). There was no biomarker–treatment interaction effect (absolute difference 1 percentage points, 95% CI –15 to 15; p=0·944). Sustained steroid-free and surgery-free remission was significantly more frequent in the top-down group than in the accelerated step-up group (149 [79%] of 189 patients vs 29 [15%] of 190 patients, absolute difference 64 percentage points, 95% CI 57 to 72; p&lt;0·0001). There were fewer adverse events (including disease flares) and serious adverse events in the top-down group than in the accelerated step-up group (adverse events: 168 vs 315; serious adverse events: 15 vs 42), with fewer complications requiring abdominal surgery (one vs ten) and no difference in serious infections (three vs eight). Interpretation: Top-down treatment with combination infliximab plus immunomodulator achieved substantially better outcomes at 1 year than accelerated step-up treatment. The biomarker did not show clinical utility. Top-down treatment should be considered standard of care for patients with newly diagnosed active Crohn's disease. Funding: Wellcome and PredictImmune Ltd.</p

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Adipocyte dysfunction in a mouse model of polycystic ovary syndrome (PCOS): evidence of adipocyte hypertrophy and tissue-specific inflammation.

    Get PDF
    Clinical research shows an association between polycystic ovary syndrome (PCOS) and chronic inflammation, a pathological state thought to contribute to insulin resistance. The underlying pathways, however, have not been defined. The purpose of this study was to characterize the inflammatory state of a novel mouse model of PCOS. Female mice lacking leptin and insulin receptors in pro-opiomelanocortin neurons (IR/LepR(POMC) mice) and littermate controls were evaluated for estrous cyclicity, ovarian and adipose tissue morphology, and body composition by QMR and CT scan. Tissue-specific macrophage infiltration and cytokine mRNA expression were measured, as well as circulating cytokine levels. Finally, glucose regulation during pregnancy was evaluated as a measure of risk for diabetes development. Forty-five percent of IR/LepR(POMC) mice showed reduced or absent ovulation. IR/LepR(POMC) mice also had increased fat mass and adipocyte hypertrophy. These traits accompanied elevations in macrophage accumulation and inflammatory cytokine production in perigonadal adipose tissue, liver, and ovary. These mice also exhibited gestational hyperglycemia as predicted. This report is the first to show the presence of inflammation in IR/LepR(POMC) mice, which develop a PCOS-like phenotype. Thus, IR/LepR(POMC) mice may serve as a new mouse model to clarify the involvement of adipose and liver tissue in the pathogenesis and etiology of PCOS, allowing more targeted research on the development of PCOS and potential therapeutic interventions

    Genetic Factors Modulate the Impact of Pubertal Androgen Excess on Insulin Sensitivity and Fertility

    Get PDF
    <div><p>Polycystic ovary syndrome (PCOS) is the most common endocrine disorder of reproductive age women. The syndrome is caused by a combination of environmental influences and genetic predisposition. Despite extensive efforts, the heritable factors contributing to PCOS development are not fully understood. The objective of this study was to test the hypothesis that genetic background contributes to the development of a PCOS-like reproductive and metabolic phenotype in mice exposed to excess DHEA during the pubertal transition. We tested whether the PCOS phenotype would be more pronounced on the diabetes-prone C57BL/6 background than the previously used strain, BALB/cByJ. In addition, we examined strain-dependent upregulation of the expression of ovarian and extra-ovarian candidate genes implicated in human PCOS, genes containing known strain variants, and genes involved with steroidogenesis or insulin sensitivity. These studies show that there are significant strain-related differences in metabolic response to excess androgen exposure during puberty. Additionally, our results suggest the C57BL/6J strain provides a more robust and uniform experimental platform for PCOS research than the BALB/cByJ strain.</p></div

    Body Composition of BALB/c and C57Bl6 strains following DHEA treatment.

    No full text
    <p>A. BALB/c and B. C57Bl/6 body weights over the course of treatment. C. Weight gain during study. D. Grams of fat mass by NMR (nuclear magnetic resonance). E. Grams of lean mass by NMR. N = 6–10 for all measurements.</p

    Ovarian Morphology.

    No full text
    <p>A) BALB/cByJ control ovary. B) BALB/cByJ treated ovary. C) C57Bl/6J control ovary. D) C57Bl/6 treated ovary.</p

    Partial Agonist, Telmisartan, Maintains PPARγ Serine 112 Phosphorylation, and Does Not Affect Osteoblast Differentiation and Bone Mass

    No full text
    <div><p>Peroxisome proliferator activated receptor gamma (PPARγ) controls both glucose metabolism and an allocation of marrow mesenchymal stem cells (MSCs) toward osteoblast and adipocyte lineages. Its activity is determined by interaction with a ligand which directs posttranscriptional modifications of PPARγ protein including dephosphorylation of Ser112 and Ser273, which results in acquiring of pro-adipocytic and insulin-sensitizing activities, respectively. PPARγ full agonist TZD rosiglitazone (ROSI) decreases phosphorylation of both Ser112 and Ser273 and its prolonged use causes bone loss in part due to diversion of MSCs differentiation from osteoblastic toward adipocytic lineage. Telmisartan (TEL), an anti-hypertensive drug from the class of angiotensin receptor blockers, also acts as a partial PPARγ agonist with insulin-sensitizing and a weak pro-adipocytic activity. TEL decreased <sup>S273</sup>pPPARγ and did not affect <sup>S112</sup>pPPARγ levels in a model of marrow MSC differentiation, U-33/γ2 cells. In contrast to ROSI, TEL did not affect osteoblast phenotype and actively blocked ROSI-induced anti-osteoblastic activity and dephosphorylation of <sup>S112</sup>pPPARγ. The effect of TEL on bone was tested side-by-side with ROSI. In contrast to ROSI, TEL administration did not affect bone mass and bone biomechanical properties measured by micro-indentation method and did not induce fat accumulation in bone, and it partially protected from ROSI-induced bone loss. In addition, TEL induced “browning” of epididymal white adipose tissue marked by increased expression of UCP1, FoxC2, Wnt10b and IGFBP2 and increased overall energy expenditure. These studies point to the complexity of mechanisms by which PPARγ acquires anti-osteoblastic and pro-adipocytic activities and suggest an importance of Ser112 phosphorylation status as being a part of the mechanism regulating this process. These studies showed that TEL acts as a full PPARγ agonist for insulin-sensitizing activity and as a partial agonist/partial antagonist for pro-adipocytic and anti-osteoblastic activities. They also suggest a relationship between PPARγ fat “browning” activity and a lack of anti-osteoblastic activity.</p></div

    Hyperandrogenemia is induced by DHEA administration.

    No full text
    <p>A. Terminal serum testosterone levels. B. terminal serum estradiol levels C. Uterus weight compared to body weight upon dissection. D. Prepubertal testosterone levels. n = 8 E. Prepubertal fasting glucose. F. Prepubertal insulin levels. n = 7–9 for BALB/c groups and n = 9–10 in C57 groups. * means p<0.05, ** means p<0.01, *** means that p<0.001. ANOVA main effects are shown by the legend while the post hoc comparisons are over the column bars.</p
    corecore