67 research outputs found

    XF2T: Cross-lingual Fact-to-Text Generation for Low-Resource Languages

    Full text link
    Multiple business scenarios require an automated generation of descriptive human-readable text from structured input data. Hence, fact-to-text generation systems have been developed for various downstream tasks like generating soccer reports, weather and financial reports, medical reports, person biographies, etc. Unfortunately, previous work on fact-to-text (F2T) generation has focused primarily on English mainly due to the high availability of relevant datasets. Only recently, the problem of cross-lingual fact-to-text (XF2T) was proposed for generation across multiple languages alongwith a dataset, XALIGN for eight languages. However, there has been no rigorous work on the actual XF2T generation problem. We extend XALIGN dataset with annotated data for four more languages: Punjabi, Malayalam, Assamese and Oriya. We conduct an extensive study using popular Transformer-based text generation models on our extended multi-lingual dataset, which we call XALIGNV2. Further, we investigate the performance of different text generation strategies: multiple variations of pretraining, fact-aware embeddings and structure-aware input encoding. Our extensive experiments show that a multi-lingual mT5 model which uses fact-aware embeddings with structure-aware input encoding leads to best results on average across the twelve languages. We make our code, dataset and model publicly available, and hope that this will help advance further research in this critical area

    EFFECT OF GAMMA IRRADIATION TECHNIQUE ON THE MICROBIAL AND NUTRITIONAL QUALITY OF EDIBLE BAMBOO SHOOT (Dendrocalamus asper) FOR SHELF-LIFE ENHANCEMENT

    Get PDF
    The present investigation was performed to evaluate the potential of gamma radiation as a postharvest technology to preserve bamboo shoots. For this, Dendrocalamus asper shoots were gamma irradiated in the dose range of 0.5 to 5.0 kGy followed by storage at 5 ± 2 °C temperature dipped into 2% NaCl solution. Acceptability of the irradiated product was assessed based on microbial, physicochemical, and organoleptic attributes as well as induced radioactivity (food safety parameter). Results of the study revealed that a dose of 2.5 kGy was sufficient to complete removal of microbial load from the bamboo shoot up to 4 log reductions when compared with the unirradiated sample. No significant changes were found in physicochemical parameters including protein, pH, moisture, HCN content, and minerals. Organoleptic evaluation for different parameters were was within the acceptable criteria up to 240 days, hence 2.5 kGy doses of irradiation had the best preservation effect on the bamboo shoots of D. asper. The result of this study suggests that irradiation could be a potential method for maintaining the quality of bamboo shoots during storage

    Investigating Flavonoid Extracts from Medicinal Plants: Evaluating their Anti-Cancer Potential, Mechanisms, and Synergistic Impact on Colon Cancer

    Get PDF
    Colon cancer, the leading cause of global cancer-related mortality, demands innovative therapeutic approaches to combat its formidable impact. This empirical study embarks on a quest to unlock novel avenues for colon cancer treatment by investigating the anti-cancer potential of flavonoid extracts sourced from medicinal plants. Our research journey commences with an in-depth examination of the staggering global burden imposed by colon cancer and the inherent limitations of current therapeutic regimens. In response to this pressing challenge, we spotlight the emerging enthusiasm for natural compounds, specifically flavonoids, as transformative agents within the realm of cancer research and therapy. In our pursuit of innovative solutions, we meticulously select medicinal plants celebrated for their flavonoid-rich content and extract these bioactive compounds with precision. Rigorous phytochemical analyses unveil the specific flavonoids at play. In a series of in vitro experiments employing colon cancer cell lines, we uncover a compelling narrative of concentration-dependent cytotoxicity, underscoring the remarkable anti-proliferative attributes of these extracts. Moreover, our investigations reveal that flavonoid extracts possess the remarkable capability to induce apoptosis, substantiated through Annexin V/PI staining and caspase activation assays. As we delve deeper into mechanistic insights, a rich tapestry unfolds, elucidating the intricate modulation of pivotal apoptosis-related pathways by these natural compounds. This study not only furnishes compelling evidence of flavonoid extracts' anti-cancer potential against colon cancer but also underscores the pivotal role of natural compounds in the ever-evolving landscape of cancer research, offering a beacon of hope for pioneering therapeutic strategies. The journey has only begun, and further investigations, alongside rigorous clinical trials, are warranted to harness the full therapeutic potential of flavonoid-based interventions in colon cancer management, potentially redefining the paradigm of cancer treatment

    Techno-economic viability of bio-based methyl ethyl ketone production from sugarcane using integrated fermentative and chemo-catalytic approach: process integration using pinch technology

    Get PDF
    Butanediols are versatile platform chemicals that can be transformed into a spectrum of valuable products. This study examines the techno-commercial feasibility of an integrated biorefinery for fermentative production of 2,3-butanediol (BDO) from sucrose of sugarcane (SC), followed by chemo-catalytic upgrading of BDO to a carbon-conservative derivative, methyl ethyl ketone (MEK), with established commercial demand. The techno-economics of three process configurations are compared for downstream MEK separation from water and co-product, isobutyraldehyde (IBA): (I) heterogeneous azeotropic distillation of MEK-water and extractive separation of (II) MEK and (III) MEK-IBA from water using p-xylene as a solvent. The thermal efficiency of these manufacturing processes is further improved using pinch technology. The implementation of pinch technology reduces 8% of BDO and 9–10% of MEK production costs. Despite these improvements, raw material and utility costs remain substantial. The capital expenditure is notably higher for MEK production from SC than BDO alone due to additional processing steps. The extraction based MEK separation is the simplest process configuration despite marginally higher capital requirements and utility consumption with slightly higher production costs than MEK-water azeotropic distillation. Economic analysis suggests that bio-based BDO is cost-competitive with its petrochemical counterpart, with a minimum gross unitary selling price of US$ 1.54, assuming a 15% internal rate of return over five-year payback periods. However, renewable MEK is approximately 16–24% costlier than the petrochemical route. Future strategies must focus on reducing feedstock costs, improving BDO fermentation efficacy, and developing a low-cost downstream separation process to make renewable MEK commercially viable

    Novel SSR Markers from BAC-End Sequences, DArT Arrays and a Comprehensive Genetic Map with 1,291 Marker Loci for Chickpea (Cicer arietinum L.)

    Get PDF
    Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes

    Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pigeonpea [<it>Cajanus cajan </it>(L.) Millsp.] is an important legume crop of rainfed agriculture. Despite of concerted research efforts directed to pigeonpea improvement, stagnated productivity of pigeonpea during last several decades may be accounted to prevalence of various biotic and abiotic constraints and the situation is exacerbated by availability of inadequate genomic resources to undertake any molecular breeding programme for accelerated crop improvement. With the objective of enhancing genomic resources for pigeonpea, this study reports for the first time, large scale development of SSR markers from BAC-end sequences and their subsequent use for genetic mapping and hybridity testing in pigeonpea.</p> <p>Results</p> <p>A set of 88,860 BAC (bacterial artificial chromosome)-end sequences (BESs) were generated after constructing two BAC libraries by using <it>Hin</it>dIII (34,560 clones) and <it>Bam</it>HI (34,560 clones) restriction enzymes. Clustering based on sequence identity of BESs yielded a set of >52K non-redundant sequences, comprising 35 Mbp or >4% of the pigeonpea genome. These sequences were analyzed to develop annotation lists and subdivide the BESs into genome fractions (e.g., genes, retroelements, transpons and non-annotated sequences). Parallel analysis of BESs for microsatellites or simple sequence repeats (SSRs) identified 18,149 SSRs, from which a set of 6,212 SSRs were selected for further analysis. A total of 3,072 novel SSR primer pairs were synthesized and tested for length polymorphism on a set of 22 parental genotypes of 13 mapping populations segregating for traits of interest. In total, we identified 842 polymorphic SSR markers that will have utility in pigeonpea improvement. Based on these markers, the <it>first </it>SSR-based genetic map comprising of 239 loci was developed for this previously uncharacterized genome. Utility of developed SSR markers was also demonstrated by identifying a set of 42 markers each for two hybrids (ICPH 2671 and ICPH 2438) for genetic purity assessment in commercial hybrid breeding programme.</p> <p>Conclusion</p> <p>In summary, while BAC libraries and BESs should be useful for genomics studies, BES-SSR markers, and the genetic map should be very useful for linking the genetic map with a future physical map as well as for molecular breeding in pigeonpea.</p
    • …
    corecore