42 research outputs found

    Multi-frame scene-flow estimation using a patch model and smooth motion prior

    Get PDF
    This paper addresses the problem of estimating the dense 3D motion of a scene over several frames using a set of calibrated cameras. Most current 3D motion estimation techniques are limited to estimating the motion over a single frame, unless a strong prior model of the scene (such as a skeleton) is introduced. Estimating the 3D motion of a general scene is difficult due to untextured surfaces, complex movements and occlusions. In this paper, we show that it is possible to track the surfaces of a scene over several frames, by introducing an effective prior on the scene motion. Experimental results show that the proposed method estimates the dense scene-flow over multiple frames, without the need for multiple-view reconstructions at every frame. Furthermore, the accuracy of the proposed method is demonstrated by comparing the estimated motion against a ground truth

    Active appearance pyramids for object parametrisation and fitting

    Get PDF
    Object class representation is one of the key problems in various medical image analysis tasks. We propose a part-based parametric appearance model we refer to as an Active Appearance Pyramid (AAP). The parts are delineated by multi-scale Local Feature Pyramids (LFPs) for superior spatial specificity and distinctiveness. An AAP models the variability within a population with local translations of multi-scale parts and linear appearance variations of the assembly of the parts. It can fit and represent new instances by adjusting the shape and appearance parameters. The fitting process uses a two-step iterative strategy: local landmark searching followed by shape regularisation. We present a simultaneous local feature searching and appearance fitting algorithm based on the weighted Lucas and Kanade method. A shape regulariser is derived to calculate the maximum likelihood shape with respect to the prior and multiple landmark candidates from multi-scale LFPs, with a compact closed-form solution. We apply the 2D AAP on the modelling of variability in patients with lumbar spinal stenosis (LSS) and validate its performance on 200 studies consisting of routine axial and sagittal MRI scans. Intervertebral sagittal and parasagittal cross-sections are typically used for the diagnosis of LSS, we therefore build three AAPs on L3/4, L4/5 and L5/S1 axial cross-sections and three on parasagittal slices. Experiments show significant improvement in convergence range, robustness to local minima and segmentation precision compared with Constrained Local Models (CLMs), Active Shape Models (ASMs) and Active Appearance Models (AAMs), as well as superior performance in appearance reconstruction compared with AAMs. We also validate the performance on 3D CT volumes of hip joints from 38 studies. Compared to AAMs, AAPs achieve a higher segmentation and reconstruction precision. Moreover, AAPs have a significant improvement in efficiency, consuming about half the memory and less than 10% of the training time and 15% of the testing time

    Wavelet appearance pyramids for landmark detection and pathology classification : application to lumbar spinal stenosis

    Get PDF
    Appearance representation and feature extraction of anatomy or anatomical features is a key step for segmentation and classification tasks. We focus on an advanced appearance model in which an object is decomposed into pyramidal complementary channels, and each channel is represented by a part-based model. We apply it to landmark detection and pathology classification on the problem of lumbar spinal stenosis. The performance is evaluated on 200 routine clinical data with varied pathologies. Experimental results show an improvement on both tasks in comparison with other appearance models. We achieve a robust landmark detection performance with average point to boundary distances lower than 2 pixels, and image-level anatomical classification with accuracies around 85%

    Warwick-JLR driver monitoring dataset (DMD) : statistics and early findings

    Get PDF
    Driving is a safety critical task that requires a high levels of attention and workload from the driver. Despite this, people often also perform secondary tasks such as eating or using a mobile phone, which increase workload levels and divert cognitive and physical attention from the primary task of driving. If a vehicle is aware that the driver is currently under high workload, the vehicle functionality can be changed in order to minimize any further demand. Traditionally, workload measurements have been performed using intrusive means such as physiological sensors. Another approach may be to monitor workload online using readily available and robust sensors accessible via the vehicle's Controller Area Network (CAN). In this paper, we present details of the Warwick-JLR Driver Monitoring Dataset (DMD) collected for this purpose, and to announce its publication for driver monitoring research. The collection protocol is briefly introduced, followed by statistical analysis of the dataset to describe its structure. Finally, the public release of the dataset, for use in both driver monitoring and data mining research, is announced

    Data mining for vehicle telemetry

    Get PDF
    This article presents a data mining methodology for driving-condition monitoring via CAN-bus data that is based on the general data mining process. The approach is applicable to many driving condition problems, and the example of road type classification without the use of location information is investigated. Location information from Global Positioning Satellites and related map data are often not available (for business reasons), or cannot represent the full dynamics of road conditions. In this work, Controller Area Network (CAN)-bus signals are used instead as inputs to models produced by machine learning algorithms. Road type classification is formulated as two related labeling problems: Road Type (A, B, C, and Motorway) and Carriageway Type (Single or Dual). An investigation is presented into preprocessing steps required prior to applying machine learning algorithms, that is, signal selection, feature extraction, and feature selection. The selection methods used include principal components analysis (PCA) and mutual information (MI), which are used to determine the relevance and redundancy of extracted features and are performed in various combinations. Finally, because there is an inherent bias toward certain road and carriageway labelings, the issue of class imbalance in classification is explained and investigated. A system is produced, which is demonstrated to successfully ascertain road type from CAN-bus data, and it is shown that the classification correlates well with input signals such as vehicle speed, steering wheel angle, and suspension height

    CHILLI : a data context-aware perturbation method for XAI

    Get PDF
    The trustworthiness of Machine Learning (ML) models can be difficult to assess, but is critical in high-risk or ethically sensitive applications. Many models are treated as a ‘black-box’ where the reasoning or criteria for a final decision is opaque to the user. To address this, some existing Explainable AI (XAI) approaches approximate model behaviour using perturbed data. However, such methods have been criticised for ignoring feature dependencies, with explanations being based on potentially unrealistic data. We propose a novel framework, CHILLI, for incorporating data context into XAI by generating contextually aware perturbations, which are faithful to the training data of the base model being explained. This is shown to improve both the soundness and accuracy of the explanations

    Dark matter line searches with the Cherenkov Telescope Array

    Get PDF
    Monochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating or decaying dark matter particles that could relatively easily be distinguished from astrophysical or instrumental backgrounds. We provide an updated assessment of the sensitivity of the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic centre region as well as of selected dwarf spheroidal galaxies. We find that current limits and detection prospects for dark matter masses above 300 GeV will be significantly improved, by up to an order of magnitude in the multi-TeV range. This demonstrates that CTA will set a new standard for gamma-ray astronomy also in this respect, as the world's largest and most sensitive high-energy gamma-ray observatory, in particular due to its exquisite energy resolution at TeV energies and the adopted observational strategy focussing on regions with large dark matter densities. Throughout our analysis, we use up-to-date instrument response functions, and we thoroughly model the effect of instrumental systematic uncertainties in our statistical treatment. We further present results for other potential signatures with sharp spectral features, e.g. box-shaped spectra, that would likewise very clearly point to a particle dark matter origin

    Performance and first measurements of the MAGIC stellar intensity interferometer

    Get PDF
    In recent years, a new generation of optical intensity interferometers has emerged, leveraging the existing infrastructure of Imaging Atmospheric Cherenkov Telescopes (IACTs). The MAGIC telescopes host the MAGIC-SII system (Stellar Intensity Interferometer), implemented to investigate the feasibility and potential of this technique on IACTs. After the first successful measurements in 2019, the system was upgraded and now features a real-time, dead-time-free, 4-channel, GPU-based correlator. These hardware modifications allow seamless transitions between MAGIC’s standard very-high-energy gamma-ray observations and optical interferometry measurements within seconds. We establish the feasibility and potential of employing IACTs as competitive optical Intensity Interferometers with minimal hardware adjustments. The measurement of a total of 22 stellar diameters are reported, 9 corresponding to reference stars with previous comparable measurements, and 13 with no prior measurements. A prospective implementation involving telescopes from the forthcoming Cherenkov Telescope Array Observatory’s Northern hemisphere array, such as the first prototype of its Large-Sized Telescopes, LST-1, is technically viable. This integration would significantly enhance the sensitivity of the current system and broaden the UV-plane coverage. This advancement would enable the system to achieve competitive sensitivity with the current generation of long-baseline optical interferometers over blue wavelengths

    Constraints on axion-like particles with the Perseus Galaxy Cluster with MAGIC

    Full text link
    Axion-like particles (ALPs) are pseudo-Nambu-Goldstone bosons that emerge in various theories beyond the standard model. These particles can interact with high-energy photons in external magnetic fields, influencing the observed gamma-ray spectrum. This study analyzes 41.3 hrs of observational data from the Perseus Galaxy Cluster collected with the MAGIC telescopes. We focused on the spectra the radio galaxy in the center of the cluster: NGC 1275. By modeling the magnetic field surrounding this target, we searched for spectral indications of ALP presence. Despite finding no statistical evidence of ALP signatures, we were able to exclude ALP models in the sub-micro electronvolt range. Our analysis improved upon previous work by calculating the full likelihood and statistical coverage for all considered models across the parameter space. Consequently, we achieved the most stringent limits to date for ALP masses around 50 neV, with cross sections down to gaγ=3×1012g_{a\gamma} = 3 \times 10^{-12} GeV1^{-1}.Comment: 25 pages, 10 figures, accepted for publication in Physics of the Dark Univers

    The variability patterns of the TeV blazar PG 1553 + 113 from a decade of MAGIC and multiband observations

    Get PDF
    PG 1553 + 113 is one of the few blazars with a convincing quasi-periodic emission in the gamma-ray band. The source is also a very high energy (VHE; >100 GeV) gamma-ray emitter. To better understand its properties and identify the underlying physical processes driving its variability, the MAGIC Collaboration initiated a multiyear, multiwavelength monitoring campaign in 2015 involving the OVRO 40-m and Medicina radio telescopes, REM, KVA, and the MAGIC telescopes, Swift and Fermi satellites, and the WEBT network. The analysis presented in this paper uses data until 2017 and focuses on the characterization of the variability. The gamma-ray data show a (hint of a) periodic signal compatible with literature, but the X-ray and VHE gamma-ray data do not show statistical evidence for a periodic signal. In other bands, the data are compatible with the gamma-ray period, but with a relatively high p-value. The complex connection between the low- and high-energy emission and the non-monochromatic modulation and changes in flux suggests that a simple one-zone model is unable to explain all the variability. Instead, a model including a periodic component along with multiple emission zones is required
    corecore