31 research outputs found

    Multi-frame scene-flow estimation using a patch model and smooth motion prior

    Get PDF
    This paper addresses the problem of estimating the dense 3D motion of a scene over several frames using a set of calibrated cameras. Most current 3D motion estimation techniques are limited to estimating the motion over a single frame, unless a strong prior model of the scene (such as a skeleton) is introduced. Estimating the 3D motion of a general scene is difficult due to untextured surfaces, complex movements and occlusions. In this paper, we show that it is possible to track the surfaces of a scene over several frames, by introducing an effective prior on the scene motion. Experimental results show that the proposed method estimates the dense scene-flow over multiple frames, without the need for multiple-view reconstructions at every frame. Furthermore, the accuracy of the proposed method is demonstrated by comparing the estimated motion against a ground truth

    Active appearance pyramids for object parametrisation and fitting

    Get PDF
    Object class representation is one of the key problems in various medical image analysis tasks. We propose a part-based parametric appearance model we refer to as an Active Appearance Pyramid (AAP). The parts are delineated by multi-scale Local Feature Pyramids (LFPs) for superior spatial specificity and distinctiveness. An AAP models the variability within a population with local translations of multi-scale parts and linear appearance variations of the assembly of the parts. It can fit and represent new instances by adjusting the shape and appearance parameters. The fitting process uses a two-step iterative strategy: local landmark searching followed by shape regularisation. We present a simultaneous local feature searching and appearance fitting algorithm based on the weighted Lucas and Kanade method. A shape regulariser is derived to calculate the maximum likelihood shape with respect to the prior and multiple landmark candidates from multi-scale LFPs, with a compact closed-form solution. We apply the 2D AAP on the modelling of variability in patients with lumbar spinal stenosis (LSS) and validate its performance on 200 studies consisting of routine axial and sagittal MRI scans. Intervertebral sagittal and parasagittal cross-sections are typically used for the diagnosis of LSS, we therefore build three AAPs on L3/4, L4/5 and L5/S1 axial cross-sections and three on parasagittal slices. Experiments show significant improvement in convergence range, robustness to local minima and segmentation precision compared with Constrained Local Models (CLMs), Active Shape Models (ASMs) and Active Appearance Models (AAMs), as well as superior performance in appearance reconstruction compared with AAMs. We also validate the performance on 3D CT volumes of hip joints from 38 studies. Compared to AAMs, AAPs achieve a higher segmentation and reconstruction precision. Moreover, AAPs have a significant improvement in efficiency, consuming about half the memory and less than 10% of the training time and 15% of the testing time

    Wavelet appearance pyramids for landmark detection and pathology classification : application to lumbar spinal stenosis

    Get PDF
    Appearance representation and feature extraction of anatomy or anatomical features is a key step for segmentation and classification tasks. We focus on an advanced appearance model in which an object is decomposed into pyramidal complementary channels, and each channel is represented by a part-based model. We apply it to landmark detection and pathology classification on the problem of lumbar spinal stenosis. The performance is evaluated on 200 routine clinical data with varied pathologies. Experimental results show an improvement on both tasks in comparison with other appearance models. We achieve a robust landmark detection performance with average point to boundary distances lower than 2 pixels, and image-level anatomical classification with accuracies around 85%

    Warwick-JLR driver monitoring dataset (DMD) : statistics and early findings

    Get PDF
    Driving is a safety critical task that requires a high levels of attention and workload from the driver. Despite this, people often also perform secondary tasks such as eating or using a mobile phone, which increase workload levels and divert cognitive and physical attention from the primary task of driving. If a vehicle is aware that the driver is currently under high workload, the vehicle functionality can be changed in order to minimize any further demand. Traditionally, workload measurements have been performed using intrusive means such as physiological sensors. Another approach may be to monitor workload online using readily available and robust sensors accessible via the vehicle's Controller Area Network (CAN). In this paper, we present details of the Warwick-JLR Driver Monitoring Dataset (DMD) collected for this purpose, and to announce its publication for driver monitoring research. The collection protocol is briefly introduced, followed by statistical analysis of the dataset to describe its structure. Finally, the public release of the dataset, for use in both driver monitoring and data mining research, is announced

    Data mining for vehicle telemetry

    Get PDF
    This article presents a data mining methodology for driving-condition monitoring via CAN-bus data that is based on the general data mining process. The approach is applicable to many driving condition problems, and the example of road type classification without the use of location information is investigated. Location information from Global Positioning Satellites and related map data are often not available (for business reasons), or cannot represent the full dynamics of road conditions. In this work, Controller Area Network (CAN)-bus signals are used instead as inputs to models produced by machine learning algorithms. Road type classification is formulated as two related labeling problems: Road Type (A, B, C, and Motorway) and Carriageway Type (Single or Dual). An investigation is presented into preprocessing steps required prior to applying machine learning algorithms, that is, signal selection, feature extraction, and feature selection. The selection methods used include principal components analysis (PCA) and mutual information (MI), which are used to determine the relevance and redundancy of extracted features and are performed in various combinations. Finally, because there is an inherent bias toward certain road and carriageway labelings, the issue of class imbalance in classification is explained and investigated. A system is produced, which is demonstrated to successfully ascertain road type from CAN-bus data, and it is shown that the classification correlates well with input signals such as vehicle speed, steering wheel angle, and suspension height

    CHILLI : a data context-aware perturbation method for XAI

    Get PDF
    The trustworthiness of Machine Learning (ML) models can be difficult to assess, but is critical in high-risk or ethically sensitive applications. Many models are treated as a ‘black-box’ where the reasoning or criteria for a final decision is opaque to the user. To address this, some existing Explainable AI (XAI) approaches approximate model behaviour using perturbed data. However, such methods have been criticised for ignoring feature dependencies, with explanations being based on potentially unrealistic data. We propose a novel framework, CHILLI, for incorporating data context into XAI by generating contextually aware perturbations, which are faithful to the training data of the base model being explained. This is shown to improve both the soundness and accuracy of the explanations

    Parallel file system analysis through application I/O tracing

    Get PDF
    Input/Output (I/O) operations can represent a significant proportion of the run-time of parallel scientific computing applications. Although there have been several advances in file format libraries, file system design and I/O hardware, a growing divergence exists between the performance of parallel file systems and the compute clusters that they support. In this paper, we document the design and application of the RIOT I/O toolkit (RIOT) being developed at the University of Warwick with our industrial partners at the Atomic Weapons Establishment and Sandia National Laboratories. We use the toolkit to assess the performance of three industry-standard I/O benchmarks on three contrasting supercomputers, ranging from a mid-sized commodity cluster to a large-scale proprietary IBM BlueGene/P system. RIOT provides a powerful framework in which to analyse I/O and parallel file system behaviour—we demonstrate, for example, the large file locking overhead of IBM's General Parallel File System, which can consume nearly 30% of the total write time in the FLASH-IO benchmark. Through I/O trace analysis, we also assess the performance of HDF-5 in its default configuration, identifying a bottleneck created by the use of suboptimal Message Passing Interface hints. Furthermore, we investigate the performance gains attributed to the Parallel Log-structured File System (PLFS) being developed by EMC Corporation and the Los Alamos National Laboratory. Our evaluation of PLFS involves two high-performance computing systems with contrasting I/O backplanes and illustrates the varied improvements to I/O that result from the deployment of PLFS (ranging from up to 25× speed-up in I/O performance on a large I/O installation to 2× speed-up on the much smaller installation at the University of Warwick)

    A smooth 6DOF motion prior for efficient 3D surface tracking

    No full text
    This paper proposes an efficient method for tracking a 3D surface model, which utilises an accurate neighbourhood motion prior to regularize the solution. Typical 3D motion trackers only estimate the local translations at each point on the surface model, which means that enforcing smooth motion between neighbouring surface points can be difficult when undergoing rigid body motion. This paper uses a patch-based representation of the scene surface so that both translations and rotations can be estimated on the surface, leading to smooth neighbouring scene flows under local rigid body motions. Since the translation and rotation motions are estimated at each patch using a variational approach, the proposed tracker is efficient with relatively few reprojections required at each frame. The proposed method is demonstrated on a real-world multi-camera sequence, and the scene-flow is accurately estimated over ninety frames
    corecore