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CHILLI: A data context-aware perturbation method for XAl

Saif Anwar ' Nathan Griffiths' Abhir Bhalerao! Thomas Popham' Mark Bell> Shaun Hellman >

Abstract

The trustworthiness of Machine Learning (ML)
models can be difficult to assess, but is critical in
high-risk or ethically sensitive applications. Many
models are treated as a ‘black-box’ where the rea-
soning or criteria for a final decision is opaque to
the user. To address this, some existing Explain-
able Al (XAI) approaches approximate model
behaviour using perturbed data. However, such
methods have been criticised for ignoring feature
dependencies, with explanations being based on
potentially unrealistic data. We propose a novel
framework, CHILLI, for incorporating data con-
text into XAI by generating contextually aware
perturbations, which are faithful to the training
data of the base model being explained. This is
shown to improve both the soundness and accu-
racy of the explanations.

1. Introduction

Machine Learning (ML) and Artificial Intelligence (AI) are
increasingly being used to tackle problems in a variety of
domains because of their prodigious performance in au-
tomated decision-making. Some of these domains have
high associated risks, such as financial systems (Ala’raj &
Abbod, 2016; Byanjankar et al., 2015), healthcare (Lodhi
et al., 2017; Mikalsen et al., 2018) and criminal justice (Rig-
ano, 2019). Incorrect decisions in these scenarios can have
significant repercussions, and making decisions with inten-
tional or inadvertent biases can lead to discrimination and
other social consequences (Reuters, 2018; Sweeney, 2013).
Therefore, it is essential that the decisions made by an ML
model are trusted before being acted upon. The foundation
of such trust is dependent on both developers and end users
understanding the reasoning behind a model’s decisions.

Due to the complexity of many ML techniques, they are
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often treated as a ‘black-box’ where the reasoning for a
prediction can be difficult to ascertain. Such understanding
would allow users to better detect biases in data, assess the
vulnerabilities of a model, and ensure a model meets any
regulatory standards (Goodman & Flaxman, 2017) and so-
cietal expectations. Explainable Al (XAI) methods aim to
increase confidence in Al systems, supporting their accep-
tance and wider adoption. While the use of XAl terminology
varies, we define explainability as providing evidence or rea-
soning for all outputs via an explanation, interpretability is
the notion that all explanations must be understandable to
users, and faithfulness is a measure of how accurately an
explanation reflects the behaviour of a system.

While some ML models are inherently interpretable (Sud-
jianto & Zhang, 2021), e.g., decision trees, where the be-
haviour of a model can implicitly be explained (Breiman,
2017), other ML techniques require explanations to be gener-
ated separately. Post-hoc XAl attempts to form explanations
after a predictive model has been learnt. Such approaches
are often model-agnostic and applicable to a range of ML
techniques (Goldstein et al., 2014; Molnar, 2023; Ribeiro
et al., 2016b). However, evaluations of such approaches
have shown that, just as ML models are adapted to their con-
text, XAl systems should also be adapted to the appropriate
deployment domain (Zhang et al., 2019; Sokol et al., 2019).

It is often challenging to interpret context from numerical
data representing quantitative information, features and sig-
nal values. For example, a value of 0.5 may represent a
probability of 50% or a value in the range [0,10]. This
is a common problem in XAI, where feature values are
used to explain predictions without contextual knowledge
of the data (Sokol et al., 2019; Zhang et al., 2019). Ear-
lier works (Lieberman & Selker, 2000; Selker & Burleson,
2000) discuss the importance of context sensitivity for com-
puter systems, which is crucial for XAl in understanding
complex ML models. An XAI framework requires under-
lying domain knowledge of numerical data, to incorporate
the appropriate semantics into the explanation. In this paper,
we explore the effects of incorporating contextual domain
knowledge into XAI, highlighting its importance when ex-
plaining predictions. We demonstrate this by evaluating
the interpretability and faithfulness of explanations in an
intuitive and quantitative manner. The contributions of this
paper are as follows.
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Figure 1. (a) The global decision space, with red and green repre-
senting decision regions for two classes. (b) The local area around
an instance, with a set of perturbations shown as orange crosses.

* We present an analysis of an existing XAl framework,
namely LIME (Ribeiro et al., 2016b), to illustrate the
impact on interpretability and faithfulness of explana-
tions when data context is disregarded.

* We propose a method for incorporating data context
into a post-hoc XAI framework when using a proxy
model.

* Finally, an algorithm is presented for generating local
contextually aware data samples for use when fitting a
proxy model.

2. Related Work

XAI methods either produce global or local explanations
(Mohseni et al., 2021). The former explain model behaviour
overall (Wang et al.; Lakkaraju et al., 2016), whereas the
latter focus on a small area of the decision space, such
as around a particular data instance (Ribeiro et al., 2016b;
2018; Zeiler & Fergus, 2013; Baehrens et al., 2009). This is
illustrated in Figure 1, which shows the decision regions of
a binary classifier, with the red and green areas representing
different classes.

2.1. Inherently Interpretable Models

The structure of some ML models is inherently interpretable,
e.g., linear regression where feature coefficients can be ob-
served (Murphy, 2023), and decision trees where the deci-
sion path can be traced. In these cases, an explanation is the
base model itself, which is of course completely faithful to
its own behaviour. As a result, such model types are often
favoured in high-risk scenarios (Rudin, 2019).

2.2. Post-hoc Approaches

It is not always be possible to use an inherently interpretable
model, for example if a pre-built model requires explaining.
Moreover, for some applications the best performing mod-
els are highly complex with large numbers of parameters
(Simonyan & Zisserman, 2015) and are consequently not in-

herently interpretable (Wickramanayake et al., 2021). While
there is increasing research into high performing inherently
interpretable models (Sudjianto & Zhang, 2021), post-hoc
XAI methods have been developed to explain existing mod-
els. These are typically model-agnostic, using only input
and output data to understand model behaviour. Some meth-
ods use counterfactual explanations, by highlighting the
consequence of modifying an input on a prediction (Verma
et al., 2020), while others, such as Shapley values (Mes-
salas et al., 2019) or proxy models, present contributions of
features towards a prediction as an explanation.

Proxy models approximate the behaviour of a base model in
an interpretable form, such as a decision tree (Schmitz et al.,
1999) or linear regression model (Ribeiro et al., 2016b). The
proxy model is used as an explanation without sacrificing
predictive performance of the base model. This is achieved
by fitting a simpler proxy model to the base model predic-
tions. A global proxy model would approximate the base
model behaviour in all areas to increase interpretability, how-
ever this may not be sufficiently faithful because of oversim-
plification. It is generally accepted that there is a trade-off
between faithfulness and interpretability (DoSilovi¢ et al.,
2018). Therefore, some XAI approaches use a local proxy
model fit to the neighbourhood of an instance being ex-
plained. This reduces the coverage of the approximation,
and so a more faithful explanation, yet with low complexity
may be formed (Wood-Doughty et al., 2021).

2.3. Perturbation Based Methods

The Local Interpretable Model-Agnostic Explanations
(LIME) method (Ribeiro et al., 2016b) explains the pre-
diction for a given instance by fitting a proxy model in its
locality. Since there may not be sufficient training data in
a locality to fit a proxy model, algorithms such as LIME
fit a proxy model to a set of synthetic perturbations of the
instance being explained, as illustrated in Figure 1b.

In LIME, a set of perturbed inputs, Z, is generated in the lo-
cality of an input instance, x, whose output prediction from
some base model, f, is being explained. The base model is
used to predict a set of target values for the perturbations,
f(Z). Alocal proxy model, g, is then fit to this perturbed
dataset. Non-categorical features are perturbed in LIME by
sampling from a Normal distribution with mean and stan-
dard deviation estimated from the training data. Samples
are taken from the center of the training data and then scaled
around the instance (Garreau & von Luxburg, 2020). Cate-
gorical features are perturbed by uniformly sampling from
the distribution of feature values in the training data.

When fitting the proxy model according to some loss func-
tion, the loss contribution of each perturbation, z € Z, is
weighted by a proximity measure, 7, (z), according to some
distance function, D(x, z), to ensure the explanation is lo-
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cally focused around z. By default in LIME, Euclidean
distance is used and is calculated over all feature dimen-
sions (Ribeiro et al., 2016b). The proximity between two
instances p and q, is calculated as shown in Equation 1,
where o is a hyperparameter defining the locality of the
explanation.

—Dz(p,q)> o

Tp(q) = exp( <

In a review of model-agnostic XAI approaches, Molnar et al.
(2021b) observe that perturbation-based methods tend to ig-
nore feature dependencies by extrapolating in areas that are
not representative of the original data distribution, and are
therefore unknown to the base model (Molnar et al., 2021a).
They also suggest that ignoring contextual constraints may
lead to unrealistic data. For example, when perturbing a
feature representing a person’s age, the perturbation method
must consider that values cannot be negative or unreason-
ably large (Molnar et al., 2021b). An explanation fit to
such data will therefore not be faithful to the true behaviour
of the base model, and so additional feature dependency
information should be included (Molnar et al., 2021a).

In this paper, we address the importance of feature depen-
dence and propose a new framework, CHILLI, that incor-
porates dependency information using prior domain knowl-
edge, and explore the effect on the faithfulness of explana-
tions.

2.4. Evaluating XAI Methods

A satisfactory explanation provides transparency, allowing
users to understand decisions and how data was used. Quan-
tifying properties such as transparency and interpretability
is difficult since the desiderata of XAl include subjective
properties relating to trust, ethics and understanding.

In this paper, we quantify the performance of proxy-model
XAI approaches through the faithfulness of explanations.
The faithfulness of a proxy model, g, used to explain a
base model, f, can be calculated using an error metric to
compare the predictions made by f and g on a set of input
instances. For a global proxy model, the inputs used for
evaluation may be from the training data used for the base
model, f (Wood-Doughty et al., 2021), whereas for a local
proxy model this may be a set of perturbations, Z, around
an instance of interest (Ribeiro et al., 2016b). From a set
of possible proxy models, GG, the proxy model with the
lowest error, g, is selected as the explanation since it is most
faithful.

3. Contextually Enhanced Interpretable Local
Explainable Al

In this section, we propose Contextually Enhanced In-
tepretable Local Explainable AI (CHILLI), an XAI frame-
work that combines the contextually aware proximity mea-
sures and domain representative perturbation generation
method presented below to explain base model behaviour
using local proxy models. CHILLI aims to satisfy potential
contextual constraints and consider limitations of numerical
data. Explanations are fit to perturbed data that is repre-
sentative of the base model training data and is local to
the instance being explained. CHILLI is based on LIME
(Ribeiro et al., 2016b), with modifications to the proximity
calculations and perturbation generation methods.

3.1. Contextually Aware Proximity Measures

Proximity in LIME is based on Euclidean distance (see
above, Section 2.3), irrespective of the feature type. How-
ever, if for some features the absolute difference between
two values does not reflect their distance, this proximity
measure becomes invalid. This is the case if, for example,
the units are not equidistant, or a feature is not measured
linearly, such as magnitude recorded on a logarithmic scale.
Such distance measures are also unsuitable for cyclic or tem-
poral features e.g., time of day where raw values for 23:00
and 00:00 appear to be far apart, but domain knowledge
informs us that they are consecutive.

We propose that the context of features should be considered
independently by incorporating the scale and bounds of each
feature to ensure the calculated distance is truly represen-
tative. Consider the points p and q, represented by feature
vectors of d dimensions. Instead of using a generic distance
function, such as Euclidean distance, the distance between
the points, D(p, q), is calculated individually for each fea-
ture dimension, ¢, using a specified distance function, D;.
The distance in each feature dimension is normalised, to
allow for equal contribution, and averaged across all dimen-
sions to give a single distance value. From this, a proximity
measure can be calculated, as shown in Equation 2.

—(;ZiedDi(pi7Qi))2> 2

s =ex

P (q) D ( 0_2
Since the proximity measure is used when quantifying the
performance of each explanation, g, an accurate proximity
measure is essential to ensure the most faithful explanation
model, g, is selected from the set of possible explanations,

G.

The value of the locality hyperparameter, o, may be adjusted
to vary the locality of an explanation in the model space. As
o increases, the proximity tends to 1, as shown in Figure 2
for a range of distance values. All perturbations for a high
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enough value of o, regardless of distance, will be assigned
a proximity of 1 and are considered equally when selecting
the best fit proxy model. Conversely, a smaller value of
o will result in greater variation between proximities for
perturbations of differing distance to the instance being
explained. This leads to the selection of a proxy model that
performs better on perturbations of closer proximity, thus
reducing the locality of the explanation.

d= — 0 5 — 25 — 100 — 200
1.00
& 0.75
3
T 050
Q
3 0.25
0'00 T T T T T T T
0 5 10 15 20 25 30

Figure 2. A comparison of the effect on proximity between two
points of fixed distance, d, as the locality parameter, o, is varied.

3.2. Domain Representative Perturbation Generation

Existing perturbation-based XAl methods, such as LIME,
do not consider contextual knowledge when generating the
perturbations which are the foundation for creating an ex-
planation (Ribeiro et al., 2016a;b; Zhang et al., 2019; Sokol
et al., 2019). Perturbations in LIME are sampled uniformly
from the entire feature space, and a proxy model fit to these
will focus on all relationships in the feature space. Such an
explanation is not local to the instance being explained, but
is generalised to the overall model behaviour. Presenting
this as a local explanation may be misleading regarding the
behaviour of the model.

Such perturbations also ignore any bounds on feature values,
such as ‘Age’ which can only take positive values. With-
out considering these bounds, perturbations may contain
unrealistic values. Moreover, since features are perturbed
independently, feature dependencies are ignored. For exam-
ple, assume that as the population of a city grows, traffic
congestion increases. Although these features are correlated,
ignoring feature dependancies may result in a perturbation
combining lowered congestion with increased population.
The omission of such dependencies may result in an unre-
alistic set of perturbations, leading to an explanation that
does not describe the behaviour of the base model (Laugel
et al., 2019). An XAI framework should generate perturba-
tions that are representative of real-world data, such as the
training data, and are local to the instance being explained.

We present a framework, CHILLI, for generating local and
contextually conforming perturbations. Our method takes in-
spiration from the SMOTE algorithm (Chawla et al., 2002).

SMOTE is a well-regarded sampling technique used to gen-
erate synthetic data when there is class imbalance (Chawla
et al., 2002). A random point is selected from the minority
class and its k-nearest-neighbours are located, for a prede-
termined number, k. One of these neighbours is selected
uniformly at random and a synthetic datapoint is generated
by linearly interpolating between the two points and uni-
formly selecting a random point on the line joining the two.
This is repeated for different instances from the minority
class until a specified degree of over-sampling has been
achieved.

We use this approach to generate perturbations, and to en-
sure perturbations fall within realistic bounds, they are pro-
duced by interpolating between an instance being explained,
z, and some other randomly selected instance, z’, in the
training data. Each feature value is interpolated indepen-
dently. For categorical features, the interpolated value is
rounded to the nearest feature value.

To maintain the locality of the perturbations, the selection
of z’ is from a probability distribution calculated using
proximity (Equation 2) which is normalised for all data
points such that P(2" = z;) = m(x;) and ), x P(2' =
x;) = 1. As aresult, perturbations are more likely to contain
values in closer proximity to x. The process for generating
a set of NV perturbations is outlined in Algorithm 1.

Algorithm 1 Contextual Perturbation Generation

Input: Number of perturbations to generate, N; Data in-
stance to perturb, z; Training dataset, X

Output: Set of perturbations Z

: F =Features of =

Initialise empty set of perturbations, Z = [ ]

Calculate 7, (z*) for each 2 € X

Assign a probability to each 2 where P(z’' = %) =

T (2)

maz(my (27)Va' €X)

while | Z| < N do

6:  Uniformly select some value between O and 1 — [
7:  Select some z° € X based on probability for each

bl

bl

=2
8: for fin F do
9: zp=ayp+1(ay —xy)
10:  end for

11: Z=2U{z}
12: end while

4. Experimental Setup

We compare the functionality and performance of our pro-
posed method, CHILLI, with that of LIME (Ribeiro et al.,
2016b), to explore the effect of incorporating contextual
information into XAI frameworks.
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4.1. Datasets

Our evaluation uses the WebTRIS and MIDAS datasets.
WebTRIS (National Highways, 2017), recorded by High-
ways England, contains traffic data at 15 minute intervals
for many motorway sites around England. We restrict the
dataset to two sites (M60/9094A and M6/7570A) between
01/01/2016 and 01/01/2017. Each site is modelled individu-
ally to monitor performance consistency across the dataset.
A Support Vector Regressor (SVR) is trained on a subset of
the available features describing date, time, average speed
and number of vehicles of various sizes, to predict the ‘Total
Volume’ of traffic per time interval. The data distribution in
the individual feature dimensions is shown in Figure 3.

MIDAS (Office, 2022), published by the UK Meteorological
Office, records hourly weather observations at multiple lo-
cations across the UK. A Recurrent Neural Network (RNN)
is trained on data containing various weather features from
a station located at Keswick and 3 neighbouring stations
(St. Bees Head, Shap and Warcop Firing Range) to predict
‘Air Temperature’ at Keswick at a given time. It is expected
that observations from surrounding areas will be related to
the upcoming weather at Keswick, and therefore the data
used from neighbouring stations is offset by 1 hour. The
distribution of the training data is shown in Figure 4.

We can hypothesise about expected feature importance due
to the linearity of the feature relationships against the target
variable. Since LIME scales perturbations according to the
covariance of the feature against the target variable, we
explore the effect on explanation performance of removing
generally linear features from the MIDAS data (namely,
those describing relative humidity and dewpoint).

4.2. Forming Explanations

Explanations containing a set of linear coefficients are pro-
duced using CHILLI and LIME for predictions made by a
base model. The magnitude of each coefficient indicates the
contribution of the corresponding feature towards the base
model prediction, whilst the sign indicates the direction of
the correlation between the feature and the target variable.

We quantify the performance of an explanation using its er-
ror, which represents its faithfulness towards the base model.
Explanations for WebTRIS predictions are quantified using
RMSE and MAE is used for MIDAS predictions. We com-
pare the error for explanations produced using CHILLI and
LIME over 25 instances, selected uniformly at random. The
selected instances are shown in Figures 3 and 4.

5. Results & Discussion

In this section, we use LIME and CHILLI to fit a local proxy
model which is used to explain a prediction produced by a

base model for a given instance.

5.1. Perturbation Generation

Figure 5 shows explanations produced by CHILLI and
LIME alongisde the perturbations used to fit them for a
prediction made by the SVR base model, f, for a randomly
selected instance, x, from the WebTRIS M6/7570A test
dataset, X. The instance is shown as the black point in each
of its feature dimensions against the target ‘Total Volume’
value. The perturbations of the instance with the prediction
of the target feature “Total Volume’ from the base model,
f(2), are shown as orange points.

From a visual inspection of Figure 5a, it can be seen that the
perturbations of features generated by LIME do not follow
the data distribution shown in Figure 3. Moreover, since
each feature is perturbed independently, feature values in
a single perturbation do not consider feature dependencies,
which leads to unrealistic perturbations being generated.
For example, a perturbation may have a “Time Interval’ of
03:00, but the value of ‘0-520cm’ may correspond to the
number of vehicles that would be observed at rush hour.

The bounds of features have also not been considered, as
can be seen in Figure 5a where all non-categorical features
exhibit perturbed values which fall outside the normalised
range of [0, 1]. Negative values of ‘0-520cm’, ‘521-660cm’
and ‘661-1160cm’ imply a negative number of vehicles
of the respective sizes passing in the corresponding time
interval, which is not possible. This leads to a set of pertur-
bations that do not represent real-world data, and therefore
do not represent the training data. The negative impact of
such inappropriate perturbations can be observed from the
predicted values from the base model, which often predicts
a negative volume of traffic flow, which is also not possi-
ble. An explanation that is fit on such perturbations will not
correctly represent the true behaviour of the base model.

The opacity of each perturbation, shown in Figure 5Sa, sig-
nifies its calculated proximity weighting, 7, (z), to the in-
stance being explained. Perturbations which are further from
the instance are sometimes assigned a higher weighting than
those which are closer. Since this indicates the contribution
of each perturbation to the selection of the best fit linear
proxy model, the produced explanation will not be locally
focused around the instance being explained, and is instead
a generalised explanation across all the perturbations.

On the other hand, the perturbations generated by CHILLI
not only conform to the distribution of the training data
shown in Figure 3, but are also realistic combinations of
feature values that fall within the appropriate feature bounds.
CHILLI also generates perturbations with greater density
around the instance being explained, which can be seen in
Figure 5a from the concentration of orange points around
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Figure 3. Normalised WebTRIS training data shown in each feature dimension against the target “Total Volume’ feature. The 25 instances
selected uniformly at random for evaluation are shown as the dark blue points.
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Figure 4. Normalised MIDAS training data shown in each feature dimension against the target ‘Keswick Air Temperature’ feature. The
25 instances selected uniformly at random for evaluation are shown as the dark blue points.
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Figure 5. (a) Perturbations (orange points) generated using LIME and CHILLI for a WebTRIS data instance, x. The predicted ‘Total
Volume’ for each perturbation from the base model, f(z), is shown on the vertical axis. Opacity of perturbations represent proximity to .
(b) Explanations produced by CHILLI and LIME, showing the feature coefficients of the linear proxy model fit to the perturbations in (a)
representing the contribution of each feature towards the predicted target value, f(z).
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the instance. This is also the case for features of a cyclic
nature, such as ‘Time Interval’ in WebTRIS, where 0 and 1
are adjacent values. This leads to an explanation that is fit
with greater emphasis on perturbations of closer locality.

5.2. Feature Contributions

The linear proxy model with the lowest error when fit to the
set of perturbations, Z, and base model predictions, f(Z), is
selected as the explanation for the instance being explained.
The explanations shown in Figure 5b indicate that CHILLI
produces explanations with greater disparity between fea-
ture coefficients. It is expected for explanations produced
by CHILLI to have larger feature coefficients than LIME,
since the perturbations generated by LIME are based on a
Normal distribution which naturally does not exhibit any
linear correlation. Due to the covariance scaling of LIME
perturbations towards the training data, some features, such
as ‘0-520cm’ in the WebTRIS data, exhibit a strong linear
correlation with ‘Total Volume’ as shown in Figure 3. LIME
recognises this and identifies it as the most significant fea-
ture contribution in its explanation. Similarly, features in the
MIDAS data containing ‘dewpoint’ and ‘relative humidity’
have a linear correlation with ‘Keswick Air Temperature’
across their range of values, as can be seen from Figure 4.

Figure 6 shows the variation in feature contributions in ex-
planations produced for the 25 instances shown in Figure
4. Again, only generally linear features have noticeable
contribution in the explanations produced by LIME. This
is unsuitable since general feature trends are not relevant
in a locally focused explaination. CHILLI produced ex-
planations that are fit to perturbations local to the instance
being explained, and recognises general linear trends in
cases where the linear relationship is also present locally.
However, CHILLI also highlights contributions from other
locally impactful features, although they are not as signifi-
cant as the generally linear features.

Upon removal of generally linear features, there is greater
variation in the explanations produced by CHILLI, as shown
in Figure 7. Since LIME cannot detect local behaviour,
it performs poorly when locality is important, and does
not identify any significant feature contributions due to the
absence of general trends. CHILLI, on the other hand, is
able to detect local trends and achieves significantly lower
MAE, indicating that the explanations produced by CHILLI
are more faithful to the true behaviour of the base model.

5.3. Explanation Faithfulness

As noted in Section 2.4, a lower error indicates a more
faithful explanation. The explanation produced by CHILLI
achieved a signifcantly lower RMSE than LIME on the per-
turbations shown in Figure 5. The explanation produced
by CHILLI predicted the target variable for the instance to
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Figure 6. Variation in feature contributions presented in expla-
nations produced by LIME and CHILLI across the 25 instances
shown in Figure 4. The median value and quartile ranges are
shown for each feature.
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Figure 7. Variation in feature contributions presented in explana-
tions produced by LIME and CHILLI for the 25 instances shown in
Figure 4 when generally linear features are excluded. The median
value and quartile ranges are shown for each feature.

be 79 whilst LIME’s explanation predicted 88. The lower
error of the CHILLI explanation, combined with a predic-
tion closer to the base model, supports the conclusion that
CHILLI produces a more faithful explanation, and is more
representative of the base model’s true behaviour.

Figure 8 shows a comparison of the error achieved by expla-
nations produced by LIME and CHILLI for both WebTRIS
and MIDAS for the 25 instances shown in Figures 3 and 4.
Explanations were also produced for the MIDAS instances
after removing generally linear features. In all explained
instances, CHLLI achieves a lower error than LIME. The
average error for each technique across all instances is also
indicated in Figure 8. CHILLI leads to an average reduc-
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Figure 8. Individual (crosses) and average (dashed line) error
achieved by explanations from LIME and CHILLI for 25 ran-
domly selected instances from WebTRIS and MIDAS.

tion in error of 75% and 58% on WebTRIS and MIDAS
respectively, with all features are included. After removing
generally linear features, the error of explanations produced
by LIME increases significantly, whereas CHILLI main-
tains a similar error since it captures other local trends. This
leads to an average reduction in error of 87% for CHILLI
compared to LIME.

5.4. Locality Hyperparameter Exploration

The importance of accurate proximity measurements can be
understood by observing the effect of varying o on MAE.
Figure 9 shows a comparison of the MAE achieved by LIME
and CHILLI for a uniformly randomly selected instance
from MIDAS, when using different values of 0. The MAE
achieved by LIME is similar across all values of o. Since
LIME forms explanations that do not consider the local
data context of the instance being explained, it is not ex-
pected for them to vary based on locality size. CHILLI
achieves lower MAE for lower values of o before stabilising
at higher values. As the defined locality increases, perturba-
tions are considered that are further from the instance being
explained. Features which do not exhibit linear relationships
on a broader scale are difficult to describe using a linear
proxy model. This leads to a worse performing explanation,
since it attempts to generalise behaviour rather than explain-
ing local trends, as with LIME. While MAE increases when
using CHILLY, it still outperforms LIME since the intuition
regarding perturbation generation is sound.

Figure 9. A comparison of the MAE achieved by explanations
produced using LIME and CHILLI for a single instance of the
MIDAS data, whilst varying the locality parameter, o.

6. Conclusion and Future Work

In this paper, we explored the effect of incorporating con-
textual domain knowledge into a model-agnostic local
perturbation-based XAl approach, namely LIME. We pro-
posed a method for contextually aware proximity measures,
to ensure locality is accurately defined and constrained. We
also proposed a method for generating perturbations that
consider the contextual limitations and dependencies of data
features. These methods are combined into a new frame-
work, CHILLLI, for generating local explanations for black-
box ML models, and we compared the functionality and
performance of CHILLI with LIME.

Using the WebTRIS and MIDAS datasets, we demonstrated
that LIME does not appropriately measure proximity be-
tween instances, resulting in an explanation which is not
local to the instance being explained. Explanations gen-
erated by LIME were found to be generalised and only
consider features with general linear trends. It was also
found that LIME does not generate perturbations that are
representative of the training data, and the perturbations
contained unrealistic values.

CHILLI was shown to generate perturbations that are repre-
sentative of the base model training data and are local to the
instance being explained. Therefore, CHILLI’s explanations
had relatively larger feature contributions compared to those
produced by LIME. CHILLI consistently achieved a lower
error, and therefore produced a more faithful explanation,
across all explained instances compared to LIME.

Through empirical and intuitive evaluation of LIME and
CHILLLI, we conclude that incorporating contextual domain
knowledge regarding data features used for generating ex-
planations improves faithfulness, which may ultimately in-
crease trust in both the explanation and explanation frame-
work. In future work we will investigate how improving the
performance of local explanations affects the overall trust
in a model. We would also like to explore the efficacy of
CHILLI when proxy models of a different form are used,
such as decision trees or small-order polynomial regressors.
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