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Abstract

This paper addresses the problem of estimating the dense 3D motion of a scene over
several frames using a set of calibrated cameras. Most current 3D motion estimation
techniques are limited to estimating the motion over a single frame, unless a strong prior
model of the scene (such as a skeleton) is introduced. Estimating the 3D motion of a
general scene is difficult due to untextured surfaces, complex movements and occlusions.
In this paper, we show that it is possible to track the surfaces of a scene over several
frames, by introducing an effective prior on the scene motion. Experimental results show
that the proposed method estimates the dense scene-flow over multiple frames, without
the need for multiple-view reconstructions at every frame. Furthermore, the accuracy
of the proposed method is demonstrated by comparing the estimated motion against a
ground truth.

1 Introduction

Estimating the motion of a scene has been a longstanding computer vision problem, and
most research has focused upon estimating the 2D motion in an image. However, estimating
the long-term 3D motion of a general scene remains a challenging problem. Many scene-
flow estimation algorithms are therefore only demonstrated for motions over a single frame
[4, 18, 19], unless multiple view-reconstructions are carried out at every frame [3, 5, 14], or
a model-based approach is adopted [8, 12, 16].

Estimating the scene-flow of a general scene is difficult since some scene surfaces may
contain little texture, but may move in a complex way. This leads to an underconstrained
problem, unless some prior knowledge about the form of the solution is introduced. For the
specific case of tracking humans, a skeleton model can be used to constrain the space of
possible solutions[12]. However, for more general scenes, it is usually necessary to enforce
smooth motion, with this being the approach taken by nearly all optical-flow techniques
[1]. There are two current approaches to enforcing smooth motion in scene-flow estimation:
either the estimated motions are regularized within the images [6, 18], or 3D translations are
regularized on a surface model, using the assumption that all motion estimates are made with
the same level of accuracy [2, 14].

c© 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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(a) (b)

Figure 1: (a) Fitted patches at frame 60 of ‘Skirt’ sequence. (b) The patches are then tracked
accurately and smoothly to their corresponding positions at frame 100, with the visual hull
at frame 100 shown for reference. The colour coding shows the temporal aspect of tracks,
with red representing the earlier frames, and green representing the later frames.

This paper takes the approach of estimating the motion directly on the model surface,
through the use of a surface patch model (see figure1). The planar patches are fitted to the
scene’s surfaces at the first frame using a local reconstruction technique [9], and are then
tracked through subsequent frames using a novel smooth motion prior. This prior is the con-
tribution of this paper and it consists of two elements to overcome the limitations of existing
scene-flow techniques. Firstly,rotationsas well as translations are estimated at each point of
the scene surface, so that the motion of neighbouring surfaces points can be more accurately
predicted than estimates containing only a translation component. Secondly, a measurement
covariance is associated with each surface motion estimate, so that the regularization can be
carried out in probabilistic sense: surface patches which have accurate motion estimates (due
to a sufficient level of texture) are used to constrain neighbouring patches which contain less
texture. The proposed method is able to estimate the scene-flow over multiple frames, and
results are demonstrated on two multi-camera sequences and compared against manually en-
tered ground truth motions. The rest of this paper is organized as follows: section 2 reviews
the related work in the area; section 3 describes the theory of the proposed method; section
4 shows some experimental results on two multi-camera sequences; and section 5 concludes
the paper.

2 Related Work

One way to estimate the 3D motion of the scene is to combine 2D motion estimates from
several cameras [6, 18, 19]. Since existing state-of-the-art optical techniques can be applied
to the problem, scene flow estimates can be readily obtained since the motion regularization
can be efficiently performed in each camera image. However, this approach suffers from the
disadvantage that the motion regularization is performed with no depth information.
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Several methods estimate the motion of the scene at discrete points on the scene surface.
Ponset al. use a variational approach to estimating the motion at each node of a mesh,
which is deformed using the Laplace operator as the regularizing energy [14]. High-quality
meshes are shown for a sequence containing small movements, however it is necessary to
re-run the reconstruction algorithm at every frame. Carceroni and Kutulakos estimate the
complex motion of a set of surface elements (surfels) over a single frame [4]. Mullins et al.
use a particle filter to estimate the motion of a set of patches using a hierarchical Gaussian
Mixture Model as a motion prior [13].

Many multi-camera performance capture methods focus on providing a sequence of tem-
porally consistent meshes, by using the mesh at the previous frame to constrain the mesh at
the next frame, often using a mesh-deformation framework [2]. This tends to be carried out
using a feature-based approach, and nearly all methods require multi-view reconstructions
at every frame [3, 5]. A final group of methods focus on matching surface points between
meshes which can be several frames apart. Starck and Hilton [17] use corner, edge and re-
gion descriptors in a Markov Random Field framework in order to estimate correspondences
between arbitrary frames of captured surfaces. Zaharescuet al. [20] define a set of features
on the mesh surface, and show superior results compared to SIFT features. The main prob-
lem with this approach is that if the scene contains surfaces with no texture, then no surface
features will be detected and estimating correspondences will be difficult for these regions.

In this work we take a surface patch-based approach to scene-flow estimation similar to
[4, 13], however the main difference is that we employ an effective smooth motion prior,
enabling motion estimates to be made over several frames. Since the motions are estimated
and regularized on the surface, a common problem involved in optical-flow estimation is
avoided: motion-discontinuities due to object boundaries. Since we make use of patches
that are densely fitted to the scene’s surfaces, the proposed algorithm provides dense motion
estimates, even in non-textured areas where feature-based approaches struggle [7, 20] and
does not require a computationally intensive stereo algorithm at every frame [5, 14].

3 Smooth Tracking of Planar Patches

3.1 Planar Patch and Motion Model

In order to smoothly track the non-rigid motion of a scene’s surfaces, a piecewise-description
of the surfaces is used: a set of planar patches. Each planar patch is described by six com-
ponents: three parametersx,y,z describing the patch centre and three parametersθx,θy,θz

describing the patch orientation. The patches are fitted to the scene surfaces using a local
surface reconstruction method such as the ones described in [9, 15]. The vectorxt is used to
represent the complete description of a patch at timet: xt = (x,y,z,θx,θy,θz)T .

Each patch is assigned a texture modelT(p), which is a function of the pixel co-ordinates
on the patch surface. An imageJc from camerac may be projected onto the patch by using
the projection functionHc(x,p), which maps a pointp on the patch surface into the image
plane of camerac, according to the statex of the patch. The projected image from camerac
onto the patch is therefore:Jc(Hc(x,p)). The problem is then to estimate the motion of each
patch from timet −1 to timet. The state of the patch at timet −1 is xt−1 and the motion of
the patch betweent −1 andt is:

dt = ∆xt = xt −xt−1. (1)
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In order to simplify the notation in the following sections,u,v,w shall be used to denote
the velocity of the patch in thex,y,z directions, andθu,θv andθw shall denote the rotation
motion of the patch.

3.2 Global Energy Model

Since the 3D tracking problem is under-defined, the range of possible patch motions must be
limited through the use of a prior, which enforces local motion smoothness. The total energy
that must be minimised therefore consists of a data term and a smoothness term:

E = Edata+λEsmooth, (2)

whereλ controls the strength of the smoothness prior. When estimating the motion of a patch
across a single frame, one would expect that the patch textureT to remain consistent with
the set of input imagesJ. A suitable cost function for the motiondt is the sum-of-squared
differences between the patch texture and input images projected onto the patch:

Edata = ∑
c∈C

∑
p∈W

(T(p)−Jc(Hc(xt−1 +dt)p))2 , (3)

whereC is the set of cameras andW is the set of pixels on the patch. A suitable smoothness
energy term may be defined by penalizing the difference between neighbouring motions. A
classic example of such an approach is the work of Horn and Schunck [10], who used the
following smoothness energy term for 2D optical-flow:

Esmooth=
(

∂u
∂x

)2

+
(

∂u
∂y

)2

+
(

∂v
∂x

)2

+
(

∂v
∂y

)2

, (4)

whereu is the flow in thex direction andv is the flow in they direction. Generalizing this
smoothness term to the 3D patch tracking problem yields:

Esmooth=

((
∂u
∂x

)2

+
(

∂u
∂y

)2

+
(

∂u
∂z

)2

+ . . .+
(

∂θw

∂z

)2
)

. (5)

3.3 Energy Minimization

In order to minimise the cost function in equation (2), a first order Taylor-series expansion
of the projected imageJ is taken, allowing the patch motion to be predicted using a set of
motion templates. The first-order Taylor expansion of the projection function yields:

Edata = ∑
c∈C

∑
p∈W

T(p)−Jc(Hc(xt−1,p))− ∂Jc

∂x

∣∣∣∣∣
xt−1

dt

2

. (6)

Differentiating the total energyEtotal = Edata+ λEsmoothwith respect to the displacement
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then gives:

∂E
∂d

= ∇Jc (T −Jc−∇Jcdt)+λ


∇2u
∇2v
∇2w
∇2θu

∇2θv

∇2θw

 , (7)

where∇Jc is the simplified notation for the Jacobian matrix∂Jc
∂d and∇2 is the Laplacian

operator. Now setting∂E
∂x = 0 and dropping the time subscripts,

(∇J)T(∇J)d = ∇J(T −J)+λ∇2d. (8)

Approximating the Laplacian∇2u with the difference betweenu and the neighbouring
mean ¯u, allows us to write the motion in terms of the image gradients and the neighbouring
motions:

d = ((∇J)T∇J+λ I)−1(∇J(T −J)−λ d̄
)
, (9)

where I is the identity matrix. This set of equations (six for each patch) can be solved
using the Gauss-Seidel algorithm, which updatesd at iterationk+1 using the neighbouring
information and image terms evaluated at the previous iterationk:

dk+1 =
(
(∇J)T∇J+λ I

)−1
(

∇J(T −J)−λ∆d̄k
)

. (10)

The model in equation (9) assumes that each patch is tracked with equal error. However,
in reality the errors will be different at each patch. The vectorsd andd̄ are therefore treated
as the means of Gaussian distributions with covariancesSandS̄. Therefore equation (10) is
modified to givedk+1 as a product of the measurement and neighbouring distributions:

Sk+1 =
(

M−1 +(S̄k)−1
)−1

(11)

dk+1 = Sk+1
(

M−1Ek− (S̄k)−1d̄k
)

, (12)

whereEk is estimate
(
(∇J)T∇J

)−1 ∇J(T−J), M is the measurement covariance,Sk+1 is the
covariance of the patch at iterationk+1, andS̄k is the covariance of the mean motion used
in approximating the Laplacian. When estimating the mean, it is important to include the
fact that measurements further away from patchi are less reliable, than those closer to patch
i. Therefore the covariancesSi are spread according to the distance from patchi. Thus,

(S̄k
i )
−1 = ∑

j∈N (i)
( f (Sk

j ,di j ))−1, (13)

d̄k
i = S̄k

i ∑
j∈N (i)

( f (Sk
j ,di j ))−1d′kj , (14)

whered′kj is the estimated motion at patchi given than it moves rigidly with respect to the
motion of patchj, andS′ = f (S,d) is function which spreads the covarianceS according
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to the distancedi j between patchesi and j. It is at this stage that an estimation of the
local rotation at each patch becomes advantageous, since the effect of the rotation atj can be
included in the predicted translation component ofd′kj . Through experimentation, it has been
found that adding noise according to the square of the distance provides a sufficient model:

S′ = S+αI(d2
i j ) (15)

where I is the identity matrix, andα is the coefficient controlling how much the covariance
S is spread. A remaining question to be addressed is how the measurement noiseM should
be estimated. Intuitively, one would expect the pixel gradients in(∇J)T∇J to be inversely
proportional to the measurement noise, since a small gradient is more likely to originate from
noise rather than a true image gradient, i.e.

M ∝ ((∇J)T∇J)−1. (16)

Using some example patches from the ‘Katy’ sequence, figure2 shows the estimated
measurement covariances for the three translation components. Three patches have much
larger uncertainties than the other patches, and it is noticable that these three patches contain
much less texture information than other patches. It is also noticeable that the ellipsoids
along the arms are aligned along the arm, indicating that these patches are likely to slide
up and down the arm, unless some form of regularization is introduced. The advantage of
the approach being presented here is clear to see: the patches with more texture information
should be used to constrain the motion of patches with less texture information.

Figure 2: Ellipsoids representing the uncertainty in position for a set of example patches
from the Katy sequence. The covariances are estimated using equation (16).

3.4 Motion Field Estimation

Although it is possible that the raw tracked patches could be used for a final application such
as video-based rendering [13], it is more likely that the method presented here will be used
as tool for applications such as mesh animation [6]. To this end, it is useful to provide motion
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field estimates by interpolating between the motion of neighbouring patches. The 3D motion
(u,v,w,θu,θv,θw)T at the pointa = (x,y,z)T is given by:

da = ( ∑
j∈N

(
f (Sj ,di j ))−1)−1 ∑

j∈N

( f (Sj ,di j ))−1d′j (17)

whered′j is the predicted motion at the pointa using the motion of patchj, Sj is covariance
associated with the motion of patchj, and f () is the spreading function defined in equation
16.

(a) Frame 0 (b) Frame 30 (c) Frame 60 (d) Frame 90

(e) Frame 0 (f) Frame 30 (g) Frame 60 (h) Frame 90

(i) Patch Centres, frames 20 to 70 (j)

Figure 3: (a)-(d) Input images at frames{0,30,60,90} of ‘Katy’ sequence (e) Patches fitted
at frame 0 (f)-(h) Tracked patches at frames{30,60,90} (i) Tracked patch centres between
frames 20 and 70 (j) Average endpoint motion estimation error.
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4 Experimental Results and Discussion

4.1 Qualitative Evaluation

The results of the proposed method are demonstrated on two sequences taken in different
performance capture studios. The ‘Katy’ sequence is 90 frames long and was captured at 30
frames per second using 32 cameras. The ‘Skirt’ sequence was captured at 40 frames per
second using 8 cameras, and is part of a publicly available dataset [8]. The two sequences
present different challenges to the scene tracker: the ‘Katy’ sequence contains surfaces with
no texture but strong changes in lighting conditions; the ‘Skirt’ sequence is captured with
fewer cameras and contains faster motion than the ‘Katy’ sequence.

As noted by Vedulaet al. [18], it is important to ensure that cameras which do not see a
particular surface point are not used for scene-flow estimates. Therefore a simple visual hull
[11] and OpenGL depth buffering was used to provide a list of visible cameras at each frame
for each patch. For the case that the list of visible cameras was empty for a particular patch,
tracking was terminated for the patch. It is however possible that ‘unseen’ patches could be
kept for the purposes of regularization, however this is left a topic for further research.

Figures3(a-d) show views of the ‘Katy’ sequence from one camera at 30-frame intervals.
Note that this sequence contains surfaces with little texture and changes in lighting condi-
tions. Figure3(e) shows the 1400 patches fitted to the scene surfaces at frame 0, figures
3(f-h) show the tracked patches at frames{30,60,90} and figure3(i) shows the trajectories
of the patch centres between frames 20 and 70. The resulting tracked motion is smooth and
coherent over the 90 frames. Note that even on the arms, where there is little texture, the
motion of the surface is accurately tracked over the sequence. This shows the advantage of a
regularized texture model approach over a feature-based one [7, 20], for which it would be
impossible to estimate correspondences in non-textured regions.

Figures4(a-d) show the views of the ‘Skirt’ sequence at frames{60,70,80,90}, and
figures4(e-h) show the patches which are fitted once at frame 60 and then tracked up to
frame 90. Figures4(i-l) show a possible application of the tracker: animation of a visual hull
mesh model.

4.2 Numerical Evaluation

In order to assess the accuracy of the tracker, a simple GUI tool was constructed to allow a
user to manually input 2D positions of a feature over time from two different views, so that
ground truth tracks could be established. In order to ensure reliability, ground truth tracks
were only accepted if the triangulation error between the two views was less than 6mm.

The motion field from section3.4was used to animate the ground truth points from their
initial positions at the first frame to the final frame. Figure3(j) shows the average error
between the estimated motion and the ground truth motion on the Katy sequence. As shown
in the figure, the final average error after 90 frames is around 40mm, and this error is steadily
accumulated throughout the sequence.

4.3 Discussion

A direct comparison with different scene-flow algorithms is difficult, however it is apparent
the the proposed method is clearly able to estimate the scene-flow over multiple frames rather
than a single frame [4, 14, 18, 19]. Since the proposed method imposes the motion prior on
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(a) Frame 60 (b) Frame 70 (c) Frame 80 (d) Frame 90

(e) Frame 60 (f) Frame 70 (g) Frame 80 (h) Frame 90

(i) Frame 60 (j) Frame 70 (k) Frame 80 (l) Frame 90

Figure 4: (a)-(d) Input images at frames{60,70,80,90} of ‘Skirt’ sequence (e) Patches fitted
at frame 60 (f)-(h) Tracked patches at frames{70,80,90} (i-l) A visual hull mesh animated
from frame 60 to frames{70,80,90}.

the scene surfaces rather than in the images, it does not suffer from the common optical-flow
problem of smoothening across object boundaries. It is also worth noting that the proposed
method has been demonstrated on a sequence containing regions with very little texture,
whilst most scene-flow sequences tend to be highly textured.

Obviously the proposed method does not generate temporally consistent meshes over
long sequences, however it is worth noting that many of these techniques are only able to
achieve the visually superior results with a multi-view reconstruction at every frame [3, 5,
14]. The proposed method does not need a reconstruction at every frame, and is able to
provide surface point tracks across time providing full motion information.

Finally, a comparison with feature-based mesh-matching techniques is also helpful. Most
feature-based methods usually produce less than 100 correspondences across 20 frames [7,
20], however the proposed approach provides more than 1000 correspondences over a longer
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time period. The advantage of the proposed method is that it can incorporate information
from regions which contain no features but do contain some information to constrain the
motion of the scene (see figure2).

5 Conclusions

A patch-based scene-flow estimation method has been proposed which is able to estimate
the motion over several frames. The proposed method makes use of a patch-based repre-
sentation that allows both translations and rotations to be estimated at each point on the
surface, increasing the effectiveness of the local rigid motion prior. In addition, the novel
neighbourhood prior takes account of measurement uncertainties by attaching a measure-
ment covariance to each patch, which helps when propagating information to neighbouring
regions. The main topic for further investigation is the inclusion of other priors such as:
preservation of geodesic distances [17] and/or multi-view stereo constraints.
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