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Abstract

This paper addresses the problem of estimating the dense 3D motion of a scene over
several frames using a set of calibrated cameras. Most current 3D motion estimation
techniques are limited to estimating the motion over a single frame, unless a strong prior
model of the scene (such as a skeleton) is introduced. Estimating the 3D motion of a
general scene is difficult due to untextured surfaces, complex movements and occlusions.
In this paper, we show that it is possible to track the surfaces of a scene over several
frames, by introducing an effective prior on the scene motion. Experimental results show
that the proposed method estimates the dense scene-flow over multiple frames, without
the need for multiple-view reconstructions at every frame. Furthermore, the accuracy
of the proposed method is demonstrated by comparing the estimated motion against a
ground truth.

1 Introduction

Estimating the motion of a scene has been a longstanding computer vision problem,
most research has focused upon estimating the 2D motion in an image. However, estim:
the long-term 3D motion of a general scene remains a challenging problem. Many sce
flow estimation algorithms are therefore only demonstrated for motions over a single fra
[4, 18, 19], unless multiple view-reconstructions are carried out at every frayie [L4], or

a model-based approach is adoptedlp, 16].

Estimating the scene-flow of a general scene is difficult since some scene surfaces
contain little texture, but may move in a complex way. This leads to an underconstrair
problem, unless some prior knowledge about the form of the solution is introduced. For
specific case of tracking humans, a skeleton model can be used to constrain the spa
possible solutiond[?]. However, for more general scenes, it is usually necessary to enfor
smooth motion, with this being the approach taken by nearly all optical-flow techniqu
[1]. There are two current approaches to enforcing smooth motion in scene-flow estimat
either the estimated motions are regularized within the ima®és3], or 3D translations are
regularized on a surface model, using the assumption that all motion estimates are made
the same level of accuracg,[14].

(© 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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(@ (b)

Figure 1: (a) Fitted patches at frame 60 of ‘Skirt’ sequence. (b) The patches are then track
accurately and smoothly to their corresponding positions at frame 100, with the visual hu
at frame 100 shown for reference. The colour coding shows the temporal aspect of track
with red representing the earlier frames, and green representing the later frames.

This paper takes the approach of estimating the motion directly on the model surfac
through the use of a surface patch model (see figur&he planar patches are fitted to the
scene’s surfaces at the first frame using a local reconstruction techiign{ are then
tracked through subsequent frames using a novel smooth motion prior. This prior is the co
tribution of this paper and it consists of two elements to overcome the limitations of existing
scene-flow techniques. Firstiptationsas well as translations are estimated at each point of
the scene surface, so that the motion of neighbouring surfaces points can be more accura
predicted than estimates containing only a translation component. Secondly, a measurem
covariance is associated with each surface motion estimate, so that the regularization can
carried out in probabilistic sense: surface patches which have accurate motion estimates (¢
to a sufficient level of texture) are used to constrain neighbouring patches which contain le:
texture. The proposed method is able to estimate the scene-flow over multiple frames, a
results are demonstrated on two multi-camera sequences and compared against manually
tered ground truth motions. The rest of this paper is organized as follows: section 2 reviev
the related work in the area; section 3 describes the theory of the proposed method; sect
4 shows some experimental results on two multi-camera sequences; and section 5 conclu
the paper.

2 Related Work

One way to estimate the 3D motion of the scene is to combine 2D motion estimates frot
several camera$]18, 19). Since existing state-of-the-art optical techniques can be applied
to the problem, scene flow estimates can be readily obtained since the motion regularizati
can be efficiently performed in each camera image. However, this approach suffers from tl
disadvantage that the motion regularization is performed with no depth information.
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Several methods estimate the motion of the scene at discrete points on the scene su
Ponset al use a variational approach to estimating the motion at each node of a me
which is deformed using the Laplace operator as the regularizing eriefpgyHigh-quality
meshes are shown for a sequence containing small movements, however it is necess:
re-run the reconstruction algorithm at every frame. Carceroni and Kutulakos estimate
complex motion of a set of surface elements (surfels) over a single frmigfllins et al.
use a particle filter to estimate the motion of a set of patches using a hierarchical Gaus
Mixture Model as a motion priorl[3].

Many multi-camera performance capture methods focus on providing a sequence of t
porally consistent meshes, by using the mesh at the previous frame to constrain the me
the next frame, often using a mesh-deformation framew@jtkThis tends to be carried out
using a feature-based approach, and nearly all methods require multi-view reconstruct
at every frame3, 5]. A final group of methods focus on matching surface points betwee
meshes which can be several frames apart. Starck and Hilpm$e corner, edge and re-
gion descriptors in a Markov Random Field framework in order to estimate corresponden
between arbitrary frames of captured surfaces. Zahaetsalu[20] define a set of features
on the mesh surface, and show superior results compared to SIFT features. The main |
lem with this approach is that if the scene contains surfaces with no texture, then no sur
features will be detected and estimating correspondences will be difficult for these regiol

In this work we take a surface patch-based approach to scene-flow estimation simile
[4, 13], however the main difference is that we employ an effective smooth motion pric
enabling motion estimates to be made over several frames. Since the motions are estin
and regularized on the surface, a common problem involved in optical-flow estimatior
avoided: motion-discontinuities due to object boundaries. Since we make use of patc
that are densely fitted to the scene’s surfaces, the proposed algorithm provides dense m
estimates, even in non-textured areas where feature-based approaches strijjlard
does not require a computationally intensive stereo algorithm at every fiarhg [

3 Smooth Tracking of Planar Patches

3.1 Planar Patch and Motion Model

In order to smoothly track the non-rigid motion of a scene’s surfaces, a piecewise-descrip
of the surfaces is used: a set of planar patches. Each planar patch is described by six
ponents: three parametets/, z describing the patch centre and three parameigi®, 6,
describing the patch orientation. The patches are fitted to the scene surfaces using a
surface reconstruction method such as the ones describ@dli][ The vectorx; is used to
represent the complete description of a patch at timxe= (X, Y,z 6y, 6y, 6,)".

Each patch is assigned a texture mod@), which is a function of the pixel co-ordinates
on the patch surface. An imagdgfrom camerac may be projected onto the patch by using
the projection functiorH¢(x,p), which maps a poinp on the patch surface into the image
plane of camera, according to the stateof the patch. The projected image from camera
onto the patch is therefordz(Hc(x,p)). The problem is then to estimate the motion of eact
patch from time — 1 to timet. The state of the patch at tinhe- 1 isx;_1 and the motion of
the patch between— 1 andt is:

dy = AXp = Xt — X1 1)
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In order to simplify the notation in the following sectionsy, w shall be used to denote
the velocity of the patch in the y, z directions, and,,6, and 6,, shall denote the rotation
motion of the patch.

3.2 Global Energy Model

Since the 3D tracking problem is under-defined, the range of possible patch motions must
limited through the use of a prior, which enforces local motion smoothness. The total energ
that must be minimised therefore consists of a data term and a smoothness term:

E= Edata+ A E:smooth (2)

whereA controls the strength of the smoothness prior. When estimating the motion of a patc
across a single frame, one would expect that the patch teXttweremain consistent with
the set of input image3. A suitable cost function for the motiadh is the sum-of-squared
differences between the patch texture and input images projected onto the patch:

Egata= z ;(T(p)_JC(HC(Xt—l‘f'dt)p))za 3)

CEE pE)

where% is the set of cameras ard is the set of pixels on the patch. A suitable smoothness
energy term may be defined by penalizing the difference between neighbouring motions.
classic example of such an approach is the work of Horn and Schagtkwho used the
following smoothness energy term for 2D optical-flow:

ou\? au\? v\ 2 v\ 2
= (5) +(55) + (5) +(5) X

whereu is the flow in thex direction andv is the flow in they direction. Generalizing this
smoothness term to the 3D patch tracking problem yields:

au\2 [ou\? [ou\? 96w\ ?
Esmooth= (((;)() +(ay> +<8Z) —l—-i—(az) ) (5)

3.3 Energy Minimization

In order to minimise the cost function in equatid),(a first order Taylor-series expansion
of the projected imagé is taken, allowing the patch motion to be predicted using a set of
motion templates. The first-order Taylor expansion of the projection function yields:

2

Bia= 3 3 [ T(0) - %(Hetx1p) - 2¢| ] - ©)

CEC peW Xt_1

Differentiating the total energ¥:ota = Egata+ A Esmooth With respect to the displacement
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then gives:

02u
0%v
JE 02w
% == DJC (T _Jc_ D‘cht)‘sz Dzeu 5 (7)
026,
(0264

whereJ; is the simplified notation for the Jacobian mat%?g and 02 is the Laplacian
operator. Now settin@% = 0 and dropping the time subscripts,

(0T (0I)d = 0I(T —J) + A 0. (8)

Approximating the Laplaciafl?u with the difference between and the neighbouring
meanu, allows us to write the motion in terms of the image gradients and the neighbouri
motions:

d=((03)T03+A)"1 (0T -J)—Ad), (9)

where | is the identity matrix. This set of equations (six for each patch) can be solv
using the Gauss-Seidel algorithm, which updates iterationk + 1 using the neighbouring
information and image terms evaluated at the previous iter&tion

gkl = ((DJ)TDJ+M)’1(DJ(T—J)—)LAEk). (10)

The model in equatiort] assumes that each patch is tracked with equal error. Howev
in reality the errors will be different at each patch. The vectbamndd are therefore treated
as the means of Gaussian distributions with covariaB@slS. Therefore equationl) is
modified to gived“* as a product of the measurement and neighbouring distributions:

-1

gt = (M—1+(§<)-1) (11)
gkl — gkt (MflEk_ (ék)—lak> 7 (12)

whereEX is estimate( (0J)T 0J) ~10J(T - J), M is the measurement covarian&s'? is the
covariance of the patch at iterati&n- 1, andS* is the covariance of the mean motion used
in approximating the Laplacian. When estimating the mean, it is important to include t
fact that measurements further away from patate less reliable, than those closer to patct
i. Therefore the covarianc&are spread according to the distance from patdtus,

=3 (F(Sdi)h (13)
je (i)
df =55 (f(Sdy)df (14)
je (i)

Whered’jk is the estimated motion at patclgiven than it moves rigidly with respect to the
motion of patchj, andS = f(S d) is function which spreads the covarian8eccording
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to the distanced;; between patchesand j. It is at this stage that an estimation of the
local rotation at each patch becomes advantageous, since the effect of the rotptian be
included in the predicted translation componemi’be Through experimentation, it has been
found that adding noise according to the square of the distance provides a sufficient mode

S =S+al(df) (15)

where | is the identity matrix, and is the coefficient controlling how much the covariance
Sis spread. A remaining question to be addressed is how the measuremer¥retisald

be estimated. Intuitively, one would expect the pixel gradientsid) ' [1J to be inversely
proportional to the measurement noise, since a small gradient is more likely to originate fro
noise rather than a true image gradient, i.e.

MO ((0J)T0d)~L (16)

Using some example patches from the ‘Katy’ sequence, figuskows the estimated
measurement covariances for the three translation components. Three patches have m
larger uncertainties than the other patches, and it is noticable that these three patches con
much less texture information than other patches. It is also noticeable that the ellipsoic
along the arms are aligned along the arm, indicating that these patches are likely to sli
up and down the arm, unless some form of regularization is introduced. The advantage
the approach being presented here is clear to see: the patches with more texture informat
should be used to constrain the motion of patches with less texture information.

Figure 2: Ellipsoids representing the uncertainty in position for a set of example patche
from the Katy sequence. The covariances are estimated using equagion (

3.4 Motion Field Estimation

Although it is possible that the raw tracked patches could be used for a final application suc
as video-based rendering/d, it is more likely that the method presented here will be used
as tool for applications such as mesh animat&nTo this end, it is useful to provide motion
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field estimates by interpolating between the motion of neighbouring patches. The 3D mo
(u,v,w, 8y, 6y,6,)" at the poina= (x,y,2)" is given by:

JEA/ JE/V

whered’, is the predicted motion at the poiausing the motion of patcl, S; is covariance

associated with the maotion of pat¢handf () is the spreading function defined in equation
16.

(a) Frame 0 (b) Frame 30

(e) Frame O (f) Frame 30 (g) Frame 60 (h) Frame 90

Endpoint Ertor against Ground Truth {mm)

Frame

(i) Patch Centres, frames 20 to 70 0]

Figure 3: (a)-(d) Input images at fram§g, 30,60, 90} of ‘Katy’ sequence (e) Patches fitted
at frame 0 (f)-(h) Tracked patches at framr{&9), 60,90} (i) Tracked patch centres between
frames 20 and 70 (j) Average endpoint motion estimation error.
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4 Experimental Results and Discussion

4.1 Qualitative Evaluation

The results of the proposed method are demonstrated on two sequences taken in differ
performance capture studios. The ‘Katy’ sequence is 90 frames long and was captured at
frames per second using 32 cameras. The ‘Skirt’ sequence was captured at 40 frames
second using 8 cameras, and is part of a publicly available da&séilje two sequences
present different challenges to the scene tracker: the ‘Katy’ sequence contains surfaces w
no texture but strong changes in lighting conditions; the ‘Skirt’ sequence is captured witl
fewer cameras and contains faster motion than the ‘Katy’ sequence.

As noted by Vedulat al. [18)], it is important to ensure that cameras which do not see a
particular surface point are not used for scene-flow estimates. Therefore a simple visual hi
[11] and OpenGL depth buffering was used to provide a list of visible cameras at each fram
for each patch. For the case that the list of visible cameras was empty for a particular patc
tracking was terminated for the patch. It is however possible that ‘unseen’ patches could |
kept for the purposes of regularization, however this is left a topic for further research.

Figures3(a-d) show views of the ‘Katy’ sequence from one camera at 30-frame intervals
Note that this sequence contains surfaces with little texture and changes in lighting conc
tions. Figure3(e) shows the 1400 patches fitted to the scene surfaces at frame 0, figure
3(f-h) show the tracked patches at fran{@9, 60,90} and figure3(i) shows the trajectories
of the patch centres between frames 20 and 70. The resulting tracked motion is smooth a
coherent over the 90 frames. Note that even on the arms, where there is little texture, tl
motion of the surface is accurately tracked over the sequence. This shows the advantage «
regularized texture model approach over a feature-based grif)]] for which it would be
impossible to estimate correspondences in non-textured regions.

Figures4(a-d) show the views of the ‘Skirt’ sequence at frar{€§, 70,80,90}, and
figures4(e-h) show the patches which are fitted once at frame 60 and then tracked up 1
frame 90. Figured(i-I) show a possible application of the tracker: animation of a visual hull
mesh model.

4.2 Numerical Evaluation

In order to assess the accuracy of the tracker, a simple GUI tool was constructed to allow
user to manually input 2D positions of a feature over time from two different views, so that
ground truth tracks could be established. In order to ensure reliability, ground truth track
were only accepted if the triangulation error between the two views was less than 6mm.
The motion field from sectiofi.4was used to animate the ground truth points from their

initial positions at the first frame to the final frame. Figu@ shows the average error
between the estimated motion and the ground truth motion on the Katy sequence. As sho
in the figure, the final average error after 90 frames is around 40mm, and this error is steadi
accumulated throughout the sequence.

4.3 Discussion

A direct comparison with different scene-flow algorithms is difficult, however it is apparent
the the proposed method is clearly able to estimate the scene-flow over multiple frames ratt
than a single frame4| 14, 18, 19]. Since the proposed method imposes the motion prior on
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(a) Frame 60 (b) Frame 70 (c) Frame 80 (d) Frame 90

(e) Frame 60 (f) Frame 70 (g) Frame 80 (h) Frame 90

(i) Frame 60 (j) Frame 70 (k) Frame 80 () Frame 90

Figure 4: (a)-(d) Inputimages at framg80, 70, 80, 90} of ‘Skirt’ sequence (e) Patches fitted
at frame 60 (f)-(h) Tracked patches at fram&¢, 80,90} (i-I) A visual hull mesh animated
from frame 60 to frame$70,80,90}.

the scene surfaces rather than in the images, it does not suffer from the common optical-
problem of smoothening across object boundaries. It is also worth noting that the propc
method has been demonstrated on a sequence containing regions with very little tex
whilst most scene-flow sequences tend to be highly textured.

Obviously the proposed method does not generate temporally consistent meshes
long sequences, however it is worth noting that many of these techniques are only abl
achieve the visually superior results with a multi-view reconstruction at every franie [
14]. The proposed method does not need a reconstruction at every frame, and is ab
provide surface point tracks across time providing full motion information.

Finally, a comparison with feature-based mesh-matching techniques is also helpful. M
feature-based methods usually produce less than 100 correspondences across 20, fran
20], however the proposed approach provides more than 1000 correspondences over a
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time period. The advantage of the proposed method is that it can incorporate informatic
from regions which contain no features but do contain some information to constrain th
motion of the scene (see figueg

5 Conclusions

A patch-based scene-flow estimation method has been proposed which is able to estim
the motion over several frames. The proposed method makes use of a patch-based rej
sentation that allows both translations and rotations to be estimated at each point on t
surface, increasing the effectiveness of the local rigid motion prior. In addition, the nove
neighbourhood prior takes account of measurement uncertainties by attaching a measu
ment covariance to each patch, which helps when propagating information to neighbourir
regions. The main topic for further investigation is the inclusion of other priors such as
preservation of geodesic distancég][and/or multi-view stereo constraints.
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