166 research outputs found
Investigation of shock waves in explosive blasts using fibre optic pressure sensors
The published version of this article may be accessed at the link below. Copyright @ IOP Publishing, 2006.We describe miniature all-optical pressure sensors, fabricated by wafer etching techniques, less than 1 mm(2) in overall cross-section with rise times in the mu s regime and pressure ranges typically 900 kPa (9 bar). Their performance is suitable for experimental studies of the pressure-time history for test models exposed to shocks initiated by an explosive charge. The small size and fast response of the sensors promises higher quality data than has been previously available from conventional electrical sensors, with potential improvements to numerical models of blast effects. Results from blast tests are presented in which up to six sensors were multiplexed, embedded within test models in a range of orientations relative to the shock front.Support from the UK Engineering&Physical
Sciences Research Council and Dstl Fort Halstead through the MoD Joint Grants Scheme are acknowledged. WN MacPherson is supported by an EPSRC Advanced Research Fellowship
The International-Trade Network: Gravity Equations and Topological Properties
This paper begins to explore the determinants of the topological properties
of the international - trade network (ITN). We fit bilateral-trade flows using
a standard gravity equation to build a "residual" ITN where trade-link weights
are depurated from geographical distance, size, border effects, trade
agreements, and so on. We then compare the topological properties of the
original and residual ITNs. We find that the residual ITN displays, unlike the
original one, marked signatures of a complex system, and is characterized by a
very different topological architecture. Whereas the original ITN is
geographically clustered and organized around a few large-sized hubs, the
residual ITN displays many small-sized but trade-oriented countries that,
independently of their geographical position, either play the role of local
hubs or attract large and rich countries in relatively complex
trade-interaction patterns
Comparative assessment of the efficiency and accuracy of the kirkwood-buff force field in protein molecular dynamics simulations: an in-silico investigation
This research compares the accuracy and efficiency of the Kirkwood-Buff force field
(KBFF), a less common force field in applications, with the widely used CHARMM36
force field. The study focuses on the stability variations of human uracil DNA
glycosylase (hUNG) enzyme in its wild form and when complexed with toxic metal
ions Cd(II), Pb(II), and Ni(II). Four systems were considered, including the free
enzyme and the enzyme complexed with each mentioned toxic ion. Utilizing the
CavityPlus server, the binding pockets for the metal ions were identified, and molecular
dynamics simulations were conducted for 100 ns with repetition using both KBFF and
CHARMM36 force fields. The enzyme stability in each system was analyzed using root
mean square deviation and radius of gyration methods. Results revealed that
irrespective of the force field, Cd(II), Ni(II), and Pb(II) ions consistently stabilized the
hUNG enzyme compared to the free enzyme. These findings highlight the efficiency of
both force fields in capturing the stabilizing interactions between toxic metal ions and
the enzyme, showcasing the reliability of KBFF in biomolecular simulations.
Consequently, this study suggests that KBFF can be considered an efficient and
accurate force field for investigating the dynamics of biomolecular systems
Clinical audit effectively bridges the evidence-practice gap in chronic subdural haematoma management
NetMets: software for quantifying and visualizing errors in biological network segmentation
One of the major goals in biomedical image processing is accurate segmentation of networks embedded in volumetric data sets. Biological networks are composed of a meshwork of thin filaments that span large volumes of tissue. Examples of these structures include neurons and microvasculature, which can take the form of both hierarchical trees and fully connected networks, depending on the imaging modality and resolution. Network function depends on both the geometric structure and connectivity. Therefore, there is considerable demand for algorithms that segment biological networks embedded in three-dimensional data. While a large number of tracking and segmentation algorithms have been published, most of these do not generalize well across data sets. One of the major reasons for the lack of general-purpose algorithms is the limited availability of metrics that can be used to quantitatively compare their effectiveness against a pre-constructed ground-truth. In this paper, we propose a robust metric for measuring and visualizing the differences between network models. Our algorithm takes into account both geometry and connectivity to measure network similarity. These metrics are then mapped back onto an explicit model for visualization
Breakpoint characterization of large deletions in EXT1 or EXT2 in 10 Multiple Osteochondromas families
<p>Abstract</p> <p>Background</p> <p>Osteochondromas (cartilage-capped bone tumors) are by far the most commonly treated of all primary benign bone tumors (50%). In 15% of cases, these tumors occur in the context of a hereditary syndrome called multiple osteochondromas (MO), an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped bone tumors at children's metaphyses. MO is caused by various mutations in <it>EXT1 </it>or <it>EXT2</it>, whereby large genomic deletions (single-or multi-exonic) are responsible for up to 8% of MO-cases.</p> <p>Methods</p> <p>Here we report on the first molecular characterization of ten large <it>EXT1</it>- and <it>EXT2</it>-deletions in MO-patients. Deletions were initially indentified using MLPA or FISH analysis and were subsequently characterized using an MO-specific tiling path array, allele-specific PCR-amplification and sequencing analysis.</p> <p>Results</p> <p>Within the set of ten large deletions, the deleted regions ranged from 2.7 to 260 kb. One <it>EXT2 </it>exon 8 deletion was found to be recurrent. All breakpoints were located outside the coding exons of <it>EXT1 </it>and <it>EXT2</it>. Non-allelic homologous recombination (NAHR) mediated by <it>Alu</it>-sequences, microhomology mediated replication dependent recombination (MMRDR) and non-homologous end-joining (NHEJ) were hypothesized as the causal mechanisms in different deletions.</p> <p>Conclusions</p> <p>Molecular characterization of <it>EXT1</it>- and <it>EXT2</it>-deletion breakpoints in MO-patients indicates that NAHR between <it>Alu-</it>sequences as well as NHEJ are causal and that the majority of these deletions are nonrecurring. These observations emphasize once more the huge genetic variability which is characteristic for MO. To our knowledge, this is the first study characterizing large genomic deletions in <it>EXT1 </it>and <it>EXT2</it>.</p
The role of MMP-9 in the anti-angiogenic effect of secreted protein acidic and rich in cysteine
- …
