227 research outputs found

    Co-Production Related To Business Counselling in the Microfinance Sector as a Demonstration of Social Cooperation: An Interpersonal Relationship Approach

    Get PDF
    Microfinance Institutions (MFIs) provide services such as microcredit, savings, insurance and Business Development Services (BDS) to low income people in order to start new businesses and expand existing businesses. MFIs cater to micro enterprises. A microenterprise is defined as an owner-managed business that has fewer than 10 employees. The studies show that micro enterprises not only need micro credit, but also BDS in order to grow their businesses. This study focuses on BDS. BDS are non-financial services such as management training, vocational training skills, marketing assistance and technology access provided to owner managers by MFIs. MFIs could provide BDS to owner managers/clients using business counselling

    The Nexus between Co-production and Willingness: Business Counselling in the Microfinance Sector

    Get PDF
    Microfinance plays a vital role to alleviate poverty through the development of micro enterprises. Microfinance Institutions (MFIs) provide services such as micro credit, savings, insurance, and business development services (BDS) to its clients. BDS are non-financial services such as business training, market linkages, and information services which are provided by Microfinance Institutions (MFIs) to its clients. BDS help owner managers improve sales and profits and enable MFIs to achieve higher loan repayment rates and higher potential for client retention

    Co-production in BDS: The evidence from the Sri Lankan Microfinance Sector

    Get PDF
    Microfinance Institutions (MFIs), in addition to the provision of microcredit, also provide business development services (BDS) to owner managers in order to develop micro enterprises. BDS are non-financial services such as business training and access to information that help owner managers of microenterprises to develop businesses. In this respect, counsellors and trainers in MFIs co-produce BDS with owner managers. Co-production is the joint efforts of two parties, who together determine the output of their collaboration. The objective of this study therefore is to examine how co-production works in a BDS setting. business development services (BDS

    Examining Counsellor Expertise: Evidence from the Sri Lankan Microfinance Sector

    Get PDF
    Posited in the context of the exacerbating conditions of the economic crisis, the shortage of financial resources in the small and medium-sized enterprise market, and the low standard of living of the population in a number of countries, microfinancing is one of the effective tools to stimulate entrepreneurship. Microfinancing is the issuance of small loans and other services, such as business development services (BDS), which also comprise components of financial literacy, business registration, market linkages, thereby serving as a reliable mechanism to support low-income individuals to start and grow their businesses and to alleviate poverty in the country

    Effects of Increased Dosage EGCG Treatment on Cognitive Deficits in the Ts65Dn Down Syndrome Mouse Model

    Get PDF
    poster abstractDown syndrome (DS), caused by trisomy of human chromosome 21 (Hsa21), is the leading genetic cause of cognitive impairment and results in a constellation of phenotypes. Although symptomatic and therapeutic treatments exist for some DS phenotypes, treatments generally do not address the genetic etiology. The Ts65Dn mouse model, which contains a triplication of approximately half the gene orthologs of Hsa21, exhibits hippocampal learning and memory deficits as well as cerebellar motor and spatial deficits similar to those present in individuals with DS. DYRK1A, one of the genes overexpressed in DS, has been identified as a potential cause of cognitive impairment; therefore normalization of DYRK1A activity may be a valid form of treatment. We have shown that Epigallocatechin-3-gallate (EGCG), a major polyphenol of green tea, can rescue skeletal deficits found in the Ts65Dn mouse model at a low dosage. When this same low dosage was used to rescue behavioral deficits, however, it was ineffective. We hypothesize that high dose EGCG treatment lasting throughout the behavioral testing period will rescue the cognitive deficits observed in Ts65Dn mice. Trisomic mice and euploid littermates were given EGCG or water (control) for 7 weeks while being tested sequentially on novel object recognition (NOR) and Morris water maze (MWM). Our current data set shows that Ts65Dn mice exhibit deficits in learning and memory; further data will be collected in order to identify the effect of EGCG. Data showing pure EGCG as being ineffective will suggest the importance adding a supplemental compound, while data showing pure EGCG as an effective form of treatment will strongly support use of EGCG in translational studies in individuals with Down syndrome

    EGCG from different sources: differential stability and effects on treating bone phenotypes related to Down syndrome

    Get PDF
    poster abstractDown Syndrome (DS) is a genetic disorder caused by trisomy of human chromosome 21 (Hsa21). DS phenotypes include cognitive impairment, craniofacial abnormalities, low muscle tone, and skeletal deficiencies. The Ts65Dn mouse model exhibits similar phenotypes as found in humans with DS, including deficits in skeletal bone. Over-expression of DYRK1A, a serine-threonine kinase encoded on Hsa21, has been linked to deficiencies in DS bone homeostasis. Epigallocatechin-3-gallate (EGCG), an aromatic polyphenol found in green tea (GT), is a known inhibitor of Dyrk1a activity. Normalization of Dyrk1a activity by EGCG may have the potential to regulate bone homeostasis, by increasing bone mineral density (BMD) and bone strength. We hypothesized that EGCG obtained from different vendors would differ in stability as well as success in ameliorating skeletal deficiencies. EGCG from different sources was subjected to degradation analysis because of its low bioavailability due to strong antioxidative characteristics. We also hypothesized that phosphoric acid would stabilize EGCG and prevent breakdown in an aqueous solution. We performed High Performance Liquid Chromatography–Mass Spectrometry (HPLC-MS) on EGCG from different sources to determine the amount of EGCG degradation in solution. Our analyses showed differential stability in EGCG from different sources or with phosphoric acid. We chose EGCG from three sources to test the hypothesis that these compounds would have differing effects treating bone phenotypes associated with DS. Three-week-old Ts65Dn and control male mice were treated with EGCG for three weeks. At six weeks of age, mice were sacrificed and femurs were extracted. BMD, bone strength, as well as architecture of the femur were assessed. Our results indicate that EGCG from different sources has diverse effects on the correction of bone phenotypes associated with DS. Our work is important to understand how EGCG from different sources may affect DS phenotypes as the EGCG is translated to human use

    Evaluation of the Effects of Green Tea Extracts on Bone Homeostasis in the Ts65Dn Down Syndrome Mouse Model

    Get PDF
    poster abstractDown Syndrome (DS) is a genetic disorder that affects ~1 in 700 live births, caused by trisomy of human chromosome 21 (Hsa21), and results in cognitive impairment, craniofacial abnormalities, low muscle tone, and skeletal deficiencies. To study these phenotypes, we utilized the Ts65Dn mouse model, which contains three copies of approximately half the orthologous found on Hsa21 and exhibits similar phenotypes as found in humans with DS. Individuals with DS and Ts65Dn mice have deficits in bone mineral density (BMD), architecture, and bone strength. Over-expression of DYRK1A, a serine-threonine kinase encoded on Hsa21, has been linked to deficiencies in DS bone homeostasis. Epigallocatechin-3- gallate (EGCG), an aromatic polyphenol found in high concentrations in green tea, is a known inhibitor of Dyrk1a activity. Normalization of Dyrk1a activity by EGCG may have the potential to regulate bone homeostasis and increase BMD and bone strength in individuals with DS. In this study, we hypothesized that EGCG obtained from different sources would have differential effects in correcting bone deficits associated with DS. To test our hypothesis, we performed Liquid chromatography–mass spectrometry (LC-MS) on EGCG and related compounds from different sources. The LC-MS analysis determined the amount of EGCG and the degradation in our stock solution. Next, we treated three-weekold Ts65Dn and control male mice with EGCG for three weeks. At six weeks of age, mice were sacrificed. DXA and micro CT analysis were performed on the femurs and skulls of the mice to assess trabecular and cortical bone structure and BMD. Our results indicate the ability of EGCG to ameliorate skeletal deficiencies and compared pure EGCG with EGCG purchased from commercial vendors in correcting skeletal deficits associated with DS

    Can Epigallocatechin gallate (EGCG) Treatment Rescue Hippocampal-Dependent Cognitive Function in a Down Syndrome Mouse Model?

    Get PDF
    poster abstractDown Syndrome (DS) is caused by the trisomy of human chromosome 21 (Hsa21). Trisomy 21 can cause various behavioral, cognitive, learning and memory deficits. Deficits in hippocampal structure and function have been identified in mouse models of DS and are implicated in cognitive and learning impairments. Mouse models have suggested that deficits in cognitive function are associated with overexpression of Dyrk1a, a gene on Hsa21 found in three copies of individuals with DS. Dyrk1a is a gene that is involved in brain development and function. Ts65Dn DS model mice exhibit trisomy for approximately half of the genes on Hsa21 including Dyrk1a and exhibit cognitive and learning impairments. We are using Ts65Dn mice to test the effects of Epigallocatechin gallate (EGCG), a Dyrk1a inhibitor, on Dyrk1a activity and cognitive function. We hypothesize that EGCG will reduce Dyrk1a activity in the hippocampus and improve hippocampal-dependent spatial learning and memory in the Morris water maze place learning task in Ts65Dn mice. The mice were given daily EGCG treatment (200 mg/kg per day) by means of oral gavage beginning on postnatal day 54 and continuing throughout water maze testing (postnatal days 67-74). Measures of spatial learning included latency and path length to find a submerged platform during acquisition trials (postnatal days 67-73). Memory for the previously learned location of the platform was assessed on a probe trial (postnatal day 74) in which the platform was removed and the amount of time spent swimming in the area of the tank previously containing the platform was measured. These measures allowed us to analyze the mice’s ability to learn and remember the position of the platform and to spatially orient themselves. Preliminary data indicates that EGCG treatment may not be an effective treatment for the spatial learning and memory deficits evident in this mouse model of DS

    Correction of cerebellar movement related deficits by normalizing Dyrk1a copy number in the Ts65Dn mouse model for Down syndrome

    Get PDF
    poster abstractElucidation of the underlying mechanisms involved in brain related deficits of Down syndrome (DS) would be useful for consideration of therapeutic interventions. Several DSspecific phenotypes have been hypothesized to be linked to altered expression or function of specific trisomic genes. One such gene of interest is D YRK1A , which has been implicated in behavioral functions of the hippocampus and cerebellum. The Ts65Dn mouse model for DS includes a triplication of D yrk1a in addition to a triplication of >100 other human chromosome 21 mouse orthologs. To evaluate the role of D yrk1a in cerebellar function, we have genetically normalized the D yrk1a copy number in otherwise trisomicTs65Dn mice and reduced D yrk1a copy number in otherwise euploid mice (2N) for a total of 3 alternative genetic doses of D yrk1a: EuploidDyrk1a +/+ , EuploidDyrk1a +/, Ts65DnDyrk1a +/+/+ , and Ts65DnDyrk1a +/+/. Cerebellar movementrelated function in these knockdown models is being assessed through a novel behavioral balance beam task. Additionally, levels of D yrk1a activity in the cerebellum for all genotypes were analyzed by HPLC. We have previously demonstrated that Ts65DnDyrk1a +/+/+ mice perform worse in the balance beam task in comparison to EuploidDyrk1a +/+ mice. Preliminary results of the current study do not indicate such a difference among Ts65DnDyrk1a +/+/+ mice in comparison to EuploidDyrk1a +/+ mice. We hypothesize that the lack of replication of the previous findings may be due to differences in postweaning housing environments. Mice in the previous study were singlehoused, whereas mice in the present study were grouphoused, which may help mitigate motor deficits in the trisomic mice. Additionally, current trends display a deficit in balance beam performance of both the EuploidDyrk1a +/and the Ts65DnDyrk1a +/+/groups, which suggests that reducing the copy number of D yrk1a by one may have detrimental effects on motor coordination. Concomitant analysis of the balance beam performances and Dyrk1a activity levels may indicate the sensitivity of the balance beam task to assess the role Dyrk1a activity in cerebellar function

    Low dose EGCG treatment beginning in adolescence does not improve cognitive impairment in a Down syndrome mouse model

    Get PDF
    Down syndrome (DS) or Trisomy 21 causes intellectual disabilities in humans and the Ts65Dn DS mouse model is deficient in learning and memory tasks. DYRK1A is triplicated in DS and Ts65Dn mice. Ts65Dn mice were given up to ~ 20 mg/kg/day epigallocatechin-3-gallate (EGCG), a Dyrk1a inhibitor, or water beginning on postnatal day 24 and continuing for three or seven weeks, and were tested on a series of behavioral and learning tasks, including a novel balance beam test. Ts65Dn as compared to control mice exhibited higher locomotor activity, impaired novel object recognition, impaired balance beam and decreased spatial learning and memory. Neither EGCG treatment improved performance of the Ts65Dn mice on these tasks. Ts65Dn mice had a non-significant increase in Dyrk1a activity in the hippocampus and cerebellum. Given the translational value of the Ts65Dn mouse model, further studies will be needed to identify the EGCG doses (and mechanisms) that may improve cognitive function
    corecore