33 research outputs found

    Human anti-C1q autoantibodies bind specifically to solid-phase C1q and enhance phagocytosis but not complement activation

    Get PDF
    Autoantibodies directed against complement component C1q are commonly associated with autoimmune diseases, especially systemic lupus erythematosus. Importantly, these anti-C1q autoantibodies are specific for ligand-bound, solid-phase C1q and do not bind to fluid-phase C1q. In patients with anti-C1q, C1q levels are in the normal range, and the autoantibodies are thus not depleting. To study these human anti-C1q autoantibodies at the molecular level, we isolated C1q-reactive B cells and recombinantly produced nine monoclonal antibodies (mAbs) from four different healthy individuals. The isolated mAbs were of the IgG isotype, contained extensively mutated variable domains, and showed high affinity to the collagen-like region of C1q. The anti-C1q mAbs exclusively bound solid-phase C1q in complex with its natural ligands, including immobilized or antigen-bound IgG, IgM or CRP, and necrotic cells. Competition experiments reveal that at least 2 epitopes, also targeted by anti-C1q antibodies in sera from SLE patients, are recognized. Electron microscopy with hexameric IgG-C1q immune complexes demonstrated that multiple mAbs can interact with a single C1q molecule and identified the region of C1q targeted by these mAbs. The opsonization of immune complexes with anti-C1q greatly enhanced Fc-receptor-mediated phagocytosis but did not increase complement activation. We conclude that human anti-C1q autoantibodies specifically bind neo-epitopes on solid-phase C1q, which results in an increase in Fc-receptor-mediated effector functions that may potentially contribute to autoimmune disease immunopathology

    Illness cognitions in head and neck squamous cell carcinoma: predicting quality of life outcome

    Get PDF
    Goals of work: This paper presents an observational study of the longitudinal effects of cancer treatment on quality of life (QoL) in patients treated for head and neck squamous cell carcinoma (HNSCC), and evaluated the contribution of patients' baseline illness cognitions to the prediction of QoL 2 years after diagnosis. Patients and methods: One hundred seventy-seven patients eligible for primary treatment for HNSCC completed the Illness Perception Questionnaire-Revised at baseline and the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire-30 at baseline, at 1-year and 2-year follow-ups. Main results Compared to baseline, patients reported better emotional functioning at both follow-ups (p<0.001), worse social functioning at 12 months (p<0.05), and better global health

    Ascitic complement system in ovarian cancer

    Get PDF
    Ovarian cancer spreads intraperitoneally and forms fluid, whereby the diagnosis and therapy often become delayed. As the complement (C) system may provide a cytotoxic effector arm for both immunological surveillance and mAb-therapy, we have characterised the C system in the intraperitoneal ascitic fluid (AF) from ovarian cancer patients. Most of the AF samples showed alternative and classical pathway haemolytic activity. The levels of C3 and C4 were similar to or in the lower normal range when compared to values in normal sera, respectively. However, elevated levels of C3a and soluble C5b-9 suggested C activation in vivo. Malignant cells isolated from the AF samples had surface deposits of C1q and C3 activation products, but not of C5b-9 (the membrane attack complex; MAC). Activation could have become initiated by anti-tumour cell antibodies that were detected in the AFs and/or by changes on tumour cell surfaces. The lack of MAC was probably due to the expression of C membrane regulators CD46, CD55 and CD59 on the tumour cells. Soluble forms of C1 inhibitor, CD59 and CD46, and the alternative pathway inhibitors factor H and FHL-1 were present in the AF at concentrations higher than in serum samples. Despite the presence of soluble C inhibitors it was possible to use AF as a C source in antibody-initiated killing of ovarian carcinoma cells. These results demonstrate that although the ovarian ascitic C system fails as an effective immunological surveillance mechanism, it could be utilised as an effector mechanism in therapy with intraperitoneally administrated mAbs, especially if the intrinsic C regulators are neutralised

    DNA Nanostructure-Templated Antibody Complexes Provide Insights into the Geometric Requirements of Human Complement Cascade Activation

    No full text
    The classical complement pathway is activated by antigen-bound IgG antibodies. Monomeric IgG must oligomerize to activate complement via the hexameric C1q complex, and hexamerizing mutants of IgG appear as promising therapeutic candidates. However, structural data have shown that it is not necessary to bind all six C1q arms to initiate complement, revealing a symmetry mismatch between C1 and the hexameric IgG complex that has not been adequately explained. Here, we use DNA nanotechnology to produce specific nanostructures to template antigens and thereby spatially control IgG valency. These DNA-nanotemplated IgG complexes can activate complement on cell-mimetic lipid membranes, which enabled us to determine the effect of IgG valency on complement activation without the requirement to mutate antibodies. We investigated this using biophysical assays together with 3D cryo-electron tomography. Our data revealed the importance of interantigen distance on antibody-mediated complement activation, and that the cleavage of complement component C4 by the C1 complex is proportional to the number of ideally spaced antigens. Increased IgG valency also translated to better terminal pathway activation and membrane attack complex formation. Together, these data provide insights into how nanopatterning antigen-antibody complexes influence the activation of the C1 complex and suggest routes to modulate complement activation by antibody engineering. Furthermore, to our knowledge, this is the first time DNA nanotechnology has been used to study the activation of the complement system.</p

    DNA Nanostructure-Templated Antibody Complexes Provide Insights into the Geometric Requirements of Human Complement Cascade Activation

    No full text
    The classical complement pathway is activated by antigen-bound IgG antibodies. Monomeric IgG must oligomerize to activate complement via the hexameric C1q complex, and hexamerizing mutants of IgG appear as promising therapeutic candidates. However, structural data have shown that it is not necessary to bind all six C1q arms to initiate complement, revealing a symmetry mismatch between C1 and the hexameric IgG complex that has not been adequately explained. Here, we use DNA nanotechnology to produce specific nanostructures to template antigens and thereby spatially control IgG valency. These DNA-nanotemplated IgG complexes can activate complement on cell-mimetic lipid membranes, which enabled us to determine the effect of IgG valency on complement activation without the requirement to mutate antibodies. We investigated this using biophysical assays together with 3D cryo-electron tomography. Our data revealed the importance of interantigen distance on antibody-mediated complement activation, and that the cleavage of complement component C4 by the C1 complex is proportional to the number of ideally spaced antigens. Increased IgG valency also translated to better terminal pathway activation and membrane attack complex formation. Together, these data provide insights into how nanopatterning antigen–antibody complexes influence the activation of the C1 complex and suggest routes to modulate complement activation by antibody engineering. Furthermore, to our knowledge, this is the first time DNA nanotechnology has been used to study the activation of the complement system

    DNA Nanostructure-Templated Antibody Complexes Provide Insights into the Geometric Requirements of Human Complement Cascade Activation

    No full text
    The classical complement pathway is activated by antigen-bound IgG antibodies. Monomeric IgG must oligomerize to activate complement via the hexameric C1q complex, and hexamerizing mutants of IgG appear as promising therapeutic candidates. However, structural data have shown that it is not necessary to bind all six C1q arms to initiate complement, revealing a symmetry mismatch between C1 and the hexameric IgG complex that has not been adequately explained. Here, we use DNA nanotechnology to produce specific nanostructures to template antigens and thereby spatially control IgG valency. These DNA-nanotemplated IgG complexes can activate complement on cell-mimetic lipid membranes, which enabled us to determine the effect of IgG valency on complement activation without the requirement to mutate antibodies. We investigated this using biophysical assays together with 3D cryo-electron tomography. Our data revealed the importance of interantigen distance on antibody-mediated complement activation, and that the cleavage of complement component C4 by the C1 complex is proportional to the number of ideally spaced antigens. Increased IgG valency also translated to better terminal pathway activation and membrane attack complex formation. Together, these data provide insights into how nanopatterning antigen–antibody complexes influence the activation of the C1 complex and suggest routes to modulate complement activation by antibody engineering. Furthermore, to our knowledge, this is the first time DNA nanotechnology has been used to study the activation of the complement system
    corecore