245 research outputs found
A new species of Dermopristis Kearn, Whittington & Evans-Gowing, 2010 (Monogenea: Microbothriidae), with observations on associations between the gut diverticula and reproductive system and on the presence of denticles in the nasal fossae of the host Glaucostegus typus (Bennett) (Elasmobranchii: Rhinobatidae)
Dermopristis cairae n. sp. (Microbothriidae) is described from the skin and possibly from the nasal fossae of the giant shovelnosed ray Glaucostegus typus (Bennett). The new species is distinguished from D. paradoxus Kearn, Whittington & Evans-Gowing, 2010 by its larger size, body shape, lack of transverse ridges on the ventral surface and absence of a seminal receptacle. Extensive short gut branches lie dorsal to the testes and adjacent to the coiled region of the vas deferens and the oo¨type, possibly reflecting high metabolic demand in these areas. Denticles are present in the lining of the nasal fossae of G. typus, providing a firm substrate for the cement-based attachment of a microbothriid. However, confirmation that D. cairae inhabits the nasal fossae of G. typus is required
Evaluation of the efficacy of Alpron disinfectant for dental unit water lines
AIMS: To assess the efficacy of a disinfectant, Alpron, for controlling microbial contamination within dental unit water lines. METHODS: The microbiological quality of water emerging from the triple syringe, high speed handpiece, cup filler and surgery hand wash basin from six dental units was assessed for microbiological total viable counts at 22 degrees C and 37 degrees C before and after treatment with Alpron solutions. RESULTS: The study found that the use of Alpron disinfectant solutions could reduce microbial counts in dental unit water lines to similar levels for drinking water. This effect was maintained in all units for up to six weeks following one course of treatment. In four out of six units the low microbial counts were maintained for 13 weeks. CONCLUSIONS: Disinfectants may have a short term role to play in controlling microbial contamination of dental unit water lines to drinking water quality. However, in the longer term attention must be paid to redesigning dental units to discourage the build up of microbial biofilms
Effects of Supersymmetric Threshold Corrections on High-Scale Flavor Textures
Integration of superpartners out of the spectrum induces potentially large
contributions to Yukawa couplings. These corrections, the supersymmetric
threshold corrections, therefore influence the CKM matrix prediction in a
non-trivial way. We study effects of threshold corrections on high-scale flavor
structures specified at the gauge coupling unification scale in supersymmetry.
In our analysis, we first consider high-scale Yukawa textures which qualify
phenomenologically viable at tree level, and find that they get completely
disqualified after incorporating the threshold corrections. Next, we consider
Yukawa couplings, such as those with five texture zeroes, which are incapable
of explaining flavor-changing proceses. Incorporation of threshold corrections,
however, makes them phenomenologically viable textures. Therefore,
supersymmetric threshold corrections are found to leave observable impact on
Yukawa couplings of quarks, and any confrontation of high-scale textures with
experiments at the weak scale must take into account such corrections.Comment: 25 pages, submitted to JHE
Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development
, AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes.Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a previously unknown transcriptional repressor family, and revealed their possible roles in plant growth and development
CP violation in sbottom decays
We study CP asymmetries in two-body decays of bottom squarks into charginos
and tops. These asymmetries probe the SUSY CP phases of the sbottom and the
chargino sector in the Minimal Supersymmetric Standard Model. We identify the
MSSM parameter space where the CP asymmetries are sizeable, and analyze the
feasibility of their observation at the LHC. As a result, potentially
detectable CP asymmetries in sbottom decays are found, which motivates further
detailed experimental studies for probing the SUSY CP phases.Comment: 29 pages, 7 figure
A light-touch routing optimization tool (RoOT) for vaccine and medical supply distribution in Mozambique.
Planning vaccine distribution in rural and urban poor communities is challenging, due in part to inadequate vehicles, limited cold storage, road availability, and weather conditions. The University of Washington and VillageReach jointly developed and tested a user-friendly, Excel spreadsheet based optimization tool for routing and scheduling to efficiently distribute vaccines and other medical commodities to health centers across Mozambique. This paper describes the tool and the process used to define the problem and obtain feedback from users during the development. The distribution and routing tool, named route optimization tool (RoOT), uses an indexing algorithm to optimize the routes under constrained resources. Numerical results are presented using five datasets, three realistic and two artificial datasets. RoOT can be used in routine or emergency situations, and may be easily adapted to include other products, regions, or logistic problems
Does zero temperature decide on the nature of the electroweak phase transition?
Taking on a new perspective of the electroweak phase transition, we investigate in detail the role played by the depth of the electroweak minimum (“vacuum energy difference”). We find a strong correlation between the vacuum energy difference and the strength of the phase transition. This correlation only breaks down if a negative eigen-value develops upon thermal corrections in the squared scalar mass matrix in the broken vacuum before the critical temperature. As a result the scalar fields slide across field space toward the symmetric vacuum, often causing a significantly weakened phase transition. Phenomenological constraints are found to strongly disfavour such sliding scalar scenarios. For several popular models, we suggest numerical bounds that guarantee a strong first order electroweak phase transition. The zero temperature phenomenology can then be studied in these parameter regions without the need for any finite temperature calculations. For almost all non-supersymmetric models with phenomenologically viable parameter points, we find a strong phase transition is guaranteed if the vacuum energy difference is greater than −8.8 × 107 GeV4. For the GNMSSM, we guarantee a strong phase transition for phenomenologically viable parameter points if the vacuum energy difference is greater than −6.9×107 GeV4. Alternatively, we capture more of the parameter space exhibiting a strong phase transition if we impose a simultaneous bound on the vacuum energy difference and the singlet mass
Development of the interRAI Pressure Ulcer Risk Scale (PURS) for use in long-term care and home care settings
<p>Abstract</p> <p>Background</p> <p>In long-term care (LTC) homes in the province of Ontario, implementation of the Minimum Data Set (MDS) assessment and The Braden Scale for predicting pressure ulcer risk were occurring simultaneously. The purpose of this study was, using available data sources, to develop a bedside MDS-based scale to identify individuals under care at various levels of risk for developing pressure ulcers in order to facilitate targeting risk factors for prevention.</p> <p>Methods</p> <p>Data for developing the interRAI Pressure Ulcer Risk Scale (interRAI PURS) were available from 2 Ontario sources: three LTC homes with 257 residents assessed during the same time frame with the MDS and Braden Scale for Predicting Pressure Sore Risk, and eighty-nine Ontario LTC homes with 12,896 residents with baseline/reassessment MDS data (median time 91 days), between 2005-2007. All assessments were done by trained clinical staff, and baseline assessments were restricted to those with no recorded pressure ulcer. MDS baseline/reassessment samples used in further testing included 13,062 patients of Ontario Complex Continuing Care Hospitals (CCC) and 73,183 Ontario long-stay home care (HC) clients.</p> <p>Results</p> <p>A data-informed Braden Scale cross-walk scale using MDS items was devised from the 3-facility dataset, and tested in the larger longitudinal LTC homes data for its association with a future new pressure ulcer, giving a c-statistic of 0.676. Informed by this, LTC homes data along with evidence from the clinical literature was used to create an alternate-form 7-item additive scale, the interRAI PURS, with good distributional characteristics and c-statistic of 0.708. Testing of the scale in CCC and HC longitudinal data showed strong association with development of a new pressure ulcer.</p> <p>Conclusions</p> <p>interRAI PURS differentiates risk of developing pressure ulcers among facility-based residents and home care recipients. As an output from an MDS assessment, it eliminates duplicated effort required for separate pressure ulcer risk scoring. Moreover, it can be done manually at the bedside during critical early days in an admission when the full MDS has yet to be completed. It can be calculated with established MDS instruments as well as with the newer interRAI suite instruments designed to follow persons across various care settings (interRAI Long-Term Care Facilities, interRAI Home Care, interRAI Palliative Care).</p
The impact of nonlinear exposure-risk relationships on seasonal time-series data: modelling Danish neonatal birth anthropometric data
Background Birth weight and length have seasonal fluctuations. Previous analyses of birth weight by latitude effects identified seemingly contradictory results, showing both 6 and 12 monthly periodicities in weight. The aims of this paper are twofold: (a) to explore seasonal patterns in a large, Danish Medical Birth Register, and (b) to explore models based on seasonal exposures and a non-linear exposure-risk relationship. Methods Birth weight and birth lengths on over 1.5 million Danish singleton, live births were examined for seasonality. We modelled seasonal patterns based on linear, U- and J-shaped exposure-risk relationships. We then added an extra layer of complexity by modelling weighted population-based exposure patterns. Results The Danish data showed clear seasonal fluctuations for both birth weight and birth length. A bimodal model best fits the data, however the amplitude of the 6 and 12 month peaks changed over time. In the modelling exercises, U- and J-shaped exposure-risk relationships generate time series with both 6 and 12 month periodicities. Changing the weightings of the population exposure risks result in unexpected properties. A J-shaped exposure-risk relationship with a diminishing population exposure over time fitted the observed seasonal pattern in the Danish birth weight data. Conclusion In keeping with many other studies, Danish birth anthropometric data show complex and shifting seasonal patterns. We speculate that annual periodicities with non-linear exposure-risk models may underlie these findings. Understanding the nature of seasonal fluctuations can help generate candidate exposures
Cytomegalovirus microRNAs Facilitate Persistent Virus Infection in Salivary Glands
Micro (mi)RNAs are small non-coding RNAs that regulate the expression of their targets' messenger RNAs through both translational inhibition and regulation of target RNA stability. Recently, a number of viruses, particularly of the herpesvirus family, have been shown to express their own miRNAs to control both viral and cellular transcripts. Although some targets of viral miRNAs are known, their function in a physiologically relevant infection remains to be elucidated. As such, no in vivo phenotype of a viral miRNA knock-out mutant has been described so far. Here, we report on the first functional phenotype of a miRNA knock-out virus in vivo. During subacute infection of a mutant mouse cytomegalovirus lacking two viral miRNAs, virus production is selectively reduced in salivary glands, an organ essential for virus persistence and horizontal transmission. This phenotype depends on several parameters including viral load and mouse genetic background, and is abolished by combined but not single depletion of natural killer (NK) and CD4+ T cells. Together, our results point towards a miRNA-based immunoevasion mechanism important for long-term virus persistence
- …