947 research outputs found

    New genus of primitive wombat (Vombatidae, Marsupialia) from Miocene deposits in the Riversleigh World Heritage Area (Queensland, Australia)

    Get PDF
    Copyright Palaeontological Association, March 2015. This is an open access article, available to all readers online, published under a creative commons licensing (https://creativecommons.org/licenses/by/4.0/)

    The Structure of Turbulence and mixed-phase Cloud Microphysics in a Highly Supercooled Altocumulus Cloud

    Get PDF
    Observations of vertically resolved turbulence and cloud microphysics in a mixed-phase altocumulus cloud are presented using in situ measurements from an instrumented aircraft. The turbulence spectrum is observed to have an increasingly negative skewness with distance below cloud top, confirming that longwave radiative cooling from the liquid layer cloud is the source of turbulence kinetic energy. Turbulence data are presented from both the liquid cloud layer and ice virga below. Vertical profiles of both bulk and microphysical liquid and ice cloud properties indicate that ice is produced within the liquid cloud layer at a temperature of -30° C. These high resolution in situ measurements support previous remotely-sensed observations from both ground based and space borne instruments, and could be used to evaluate numerical model simulations of altocumulus clouds at all scales from eddy resolving to climate

    A method to represent subgrid-scale updraft velocity in kilometer-scale models: Implication for aerosol activation

    Get PDF
    ©2014. American Geophysical Union. All Rights Reserved. Updraft velocities strongly control the activation of aerosol particles or that component that act as cloud condensation nuclei (CCN). For kilometer-scale models, vertical motions are partially resolved but the subgrid-scale (SGS) contribution needs to be parametrized or constrained to properly represent the activation of CCNs. This study presents a method to estimate the missing SGS (or unresolved) contribution to vertical velocity variability in models with horizontal grid sizes up to ∼2 km. A framework based on Large Eddy Simulations (LES) and high-resolution aircraft observations of stratocumulus and shallow cumulus clouds has been developed and applied to output from the United Kingdom Met Office Unified Model (UM) operating at kilometer-scale resolutions in numerical weather prediction configuration. For a stratocumulus deck simulation, we show that the UM 1 km model underestimates significantly the variability of updraft velocity with an averaged cloud base standard deviation between 0.04 and 0.05 m s-1 compared to LES and aircraft estimates of 0.38 and 0.54 m s-1, respectively. Once the SGS variability is considered, the UM corrected averages are between 0.34 and 0.44 m s-1. Off-line calculations of CCN-activated fraction using an activation scheme have been performed to illustrate the implication of including the SGS vertical velocity. It suggests increased CCN-activated fraction from 0.52 to 0.89 (respectively, 0.10 to 0.54) for a clean (respectively, polluted) aerosol environment for simulations with a 1 km horizontal grid size. Our results highlight the importance of representing the SGS vertical velocity in kilometer-scale simulations of aerosol-cloud interactions. Key PointsWe seek to improve the aerosol activation behavior in kilometer-scale modelsA method to constrain the subgrid-scale updraft velocity is presentedWe highlight the potential implication for aerosol-cloud interactions modeling.This work was funded by the Natural Environment Research Council (NERC) Aerosol-Cloud Interactions—a Directed Programme to Reduce Uncertainty in Forcing (ACID-PRUF) programme, grant code NE/I020121/1. The authors thank the scientists, ground crew and aircrew of the FAAM BAe-146 and C-130 aircraft, who were instrumental in the collection of the data analyzed from the VOCALS-REx campaign. The C-130 data were provided by NCAR/EOL, under sponsorship of the National Science Foundation. http://data.eol. ucar.edu/. The FAAM BAe-146 is jointly funded by the UK Met Office and the Natural Environment Research Council. VOCALS was supported by the UK Met Office and NERC, the latter through grant NE/F019874/1

    The Universal Plausibility Metric (UPM) & Principle (UPP)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mere possibility is not an adequate basis for asserting scientific plausibility. A precisely defined universal bound is needed beyond which the assertion of <it>plausibility</it>, particularly in life-origin models, can be considered operationally falsified. But can something so seemingly relative and subjective as plausibility ever be quantified? Amazingly, the answer is, "Yes." A method of objectively measuring the plausibility of any chance hypothesis (The Universal Plausibility Metric [UPM]) is presented. A numerical inequality is also provided whereby any chance hypothesis can be definitively falsified when its UPM metric of ξ is < 1 (The Universal Plausibility Principle [UPP]). Both UPM and UPP pre-exist and are independent of any experimental design and data set.</p> <p>Conclusion</p> <p>No low-probability hypothetical plausibility assertion should survive peer-review without subjection to the UPP inequality standard of formal falsification (ξ < 1).</p

    Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI – Part 1: Method description and sensitivity

    Get PDF
    This is the final version. Available on open access from EGU via the DOI in this recordData availability: The data used for this study are available from the corresponding author, FP, upon reasonable request.High-temporal-resolution observations from satellites have a great potential for studying the impact of biomass burning aerosols and clouds over the south-east Atlantic Ocean (SEAO). This paper presents a method developed to simultaneously retrieve aerosol and cloud properties in aerosol above-cloud conditions from the geostationary instrument Meteosat Second Generation/Spinning Enhanced Visible and Infrared Imager (MSG/SEVIRI). The above-cloud aerosol optical thickness (AOT), the cloud optical thickness (COT) and the cloud droplet effective radius (CER) are derived from the spectral contrast and the magnitude of the signal measured in three channels in the visible to shortwave infrared region. The impact of the absorption from atmospheric gases on the satellite signal is corrected by applying transmittances calculated using the water vapour profiles from a Met Office forecast model. The sensitivity analysis shows that a 10 % error on the humidity profile leads to an 18.5 % bias on the above-cloud AOT, which highlights the importance of an accurate atmospheric correction scheme. In situ measurements from the CLARIFY-2017 airborne field campaign are used to constrain the aerosol size distribution and refractive index that is assumed for the aforementioned retrieval algorithm. The sensitivities in the retrieved AOT, COT and CER to the aerosol model assumptions are assessed. Between 09:00 and 15:00 UTC, an uncertainty of 40 % is estimated on the above-cloud AOT, which is dominated by the sensitivity of the retrieval to the single-scattering albedo. The absorption AOT is less sensitive to the aerosol assumptions with an uncertainty generally lower than 17 % between 09:00 and 15:00 UTC. Outside of that time range, as the scattering angle decreases, the sensitivity of the AOT and the absorption AOT to the aerosol model increases. The retrieved cloud properties are only weakly sensitive to the aerosol model assumptions throughout the day, with biases lower than 6 % on the COT and 3 % on the CER. The stability of the retrieval over time is analysed. For observations outside of the backscattering glory region, the time series of the aerosol and cloud properties are physically consistent, which confirms the ability of the retrieval to monitor the temporal evolution of aerosol above-cloud events over the SEAO.Research Council of NorwayNetB

    Evaluation of the efficacy of Alpron disinfectant for dental unit water lines

    Get PDF
    AIMS: To assess the efficacy of a disinfectant, Alpron, for controlling microbial contamination within dental unit water lines. METHODS: The microbiological quality of water emerging from the triple syringe, high speed handpiece, cup filler and surgery hand wash basin from six dental units was assessed for microbiological total viable counts at 22 degrees C and 37 degrees C before and after treatment with Alpron solutions. RESULTS: The study found that the use of Alpron disinfectant solutions could reduce microbial counts in dental unit water lines to similar levels for drinking water. This effect was maintained in all units for up to six weeks following one course of treatment. In four out of six units the low microbial counts were maintained for 13 weeks. CONCLUSIONS: Disinfectants may have a short term role to play in controlling microbial contamination of dental unit water lines to drinking water quality. However, in the longer term attention must be paid to redesigning dental units to discourage the build up of microbial biofilms

    A natural little hierarchy for RS from accidental SUSY

    Full text link
    We use supersymmetry to address the little hierarchy problem in Randall-Sundrum models by naturally generating a hierarchy between the IR scale and the electroweak scale. Supersymmetry is broken on the UV brane which triggers the stabilization of the warped extra dimension at an IR scale of order 10 TeV. The Higgs and top quark live near the IR brane whereas light fermion generations are localized towards the UV brane. Supersymmetry breaking causes the first two sparticle generations to decouple, thereby avoiding the supersymmetric flavour and CP problems, while an accidental R-symmetry protects the gaugino mass. The resulting low-energy sparticle spectrum consists of stops, gauginos and Higgsinos which are sufficient to stabilize the little hierarchy between the IR scale and the electroweak scale. Finally, the supersymmetric little hierarchy problem is ameliorated by introducing a singlet Higgs field on the IR brane.Comment: 37 pages, 3 figures; v2: minor corrections, version published in JHE

    Candidate gene resequencing to identify rare, pedigree-specific variants influencing healthy aging phenotypes in the long life family study

    Get PDF
    Background: The Long Life Family Study (LLFS) is an international study to identify the genetic components of various healthy aging phenotypes. We hypothesized that pedigree-specific rare variants at longevity-associated genes could have a similar functional impact on healthy phenotypes. Methods: We performed custom hybridization capture sequencing to identify the functional variants in 464 candidate genes for longevity or the major diseases of aging in 615 pedigrees (4,953 individuals) from the LLFS, using a multiplexed, custom hybridization capture. Variants were analyzed individually or as a group across an entire gene for association to aging phenotypes using family based tests. Results: We found significant associations to three genes and nine single variants. Most notably, we found a novel variant significantly associated with exceptional survival in the 3' UTR OBFC1 in 13 individuals from six pedigrees. OBFC1 (chromosome 10) is involved in telomere maintenance, and falls within a linkage peak recently reported from an analysis of telomere length in LLFS families. Two different algorithms for single gene associations identified three genes with an enrichment of variation that was significantly associated with three phenotypes (GSK3B with the Healthy Aging Index, NOTCH1 with diastolic blood pressure and TP53 with serum HDL). Conclusions: Sequencing analysis of family-based associations for age-related phenotypes can identify rare or novel variants

    Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development

    Get PDF
    , AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes.Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a previously unknown transcriptional repressor family, and revealed their possible roles in plant growth and development

    Electroweak Baryogenesis and Dark Matter with an approximate R-symmetry

    Full text link
    It is well known that R-symmetric models dramatically alleviate the SUSY flavor and CP problems. We study particular modifications of existing R-symmetric models which share the solution to the above problems, and have interesting consequences for electroweak baryogenesis and the Dark Matter (DM) content of the universe. In particular, we find that it is naturally possible to have a strongly first-order electroweak phase transition while simultaneously relaxing the tension with EDM experiments. The R-symmetry (and its small breaking) implies that the gauginos (and the neutralino LSP) are pseudo-Dirac fermions, which is relevant for both baryogenesis and DM. The singlet superpartner of the U(1)_Y pseudo-Dirac gaugino plays a prominent role in making the electroweak phase transition strongly first-order. The pseudo-Dirac nature of the LSP allows it to behave similarly to a Dirac particle during freeze-out, but like a Majorana particle for annihilation today and in scattering against nuclei, thus being consistent with current constraints. Assuming a standard cosmology, it is possible to simultaneously have a strongly first-order phase transition conducive to baryogenesis and have the LSP provide the full DM relic abundance, in part of the allowed parameter space. However, other possibilities for DM also exist, which are discussed. It is expected that upcoming direct DM searches as well as neutrino signals from DM annihilation in the Sun will be sensitive to this class of models. Interesting collider and Gravity-wave signals are also briefly discussed.Comment: 50 pages, 10 figure
    corecore