5 research outputs found

    Effective Mass Calculations for Two-dimensional Gas of Dipolar Fermions

    Get PDF
    We consider a two-dimensional system of ultracold dipolar fermions with dipole moments aligned in the perpendicular direction. We use the static structure factor information from Fermi-Hypernetted-Chain calculations to obtain the effective many-body dipole–dipole interaction and calculate the many-body effective mass of the system within the G0W approximation to the self-energy. A large cancellation between different contributions to the self-energy results in a weak dependence of the effective mass on the interaction strength over a large range of coupling constants. © 2016, Springer Science+Business Media New York

    Density functional theory investigation of two-dimensional dipolar fermions in a harmonic trap

    Get PDF
    We investigate the behavior of polarized dipolar fermions in a two-dimensional harmonic trap in the framework of the density functional theory (DFT) formalism using the local density approximation. We treat only a few particles interacting moderately. Important results were deduced concerning key characteristics of the system such as total energy and particle density. Our results indicate that, at variance with Coulombic systems, the exchange- correlation component was found to provide a large contribution to the total energy for a large range of interaction strengths and particle numbers. In addition, the density profiles of the dipoles are shown to display important features around the origin that is not possible to capture by earlier, simpler treatments of such systems. © Published under licence by IOP Publishing Ltd

    Theory of the Pseudospin resonance in semiconductor bilayers

    Get PDF
    The pseudospin degree of freedom in a semiconductor bilayer gives rise to a collective mode analogous to the ferromagnetic-resonance mode of a ferromagnet. We present a many-body theory of the dependence of the energy and the damping of this mode on layer separation d. Based on these results, we discuss the possibilities of realizing transport-current driven pseudospin-transfer oscillators in semiconductors, and of using the pseudospin-transfer effect as an experimental probe of intersubband plasmons. © 2007 The American Physical Society
    corecore