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The pseudospin degree of freedom in a semiconductor bilayer gives rise to a collective mode analogous
to the ferromagnetic-resonance mode of a ferromagnet. We present a many-body theory of the dependence
of the energy and the damping of this mode on layer separation d. Based on these results, we discuss the
possibilities of realizing transport-current driven pseudospin-transfer oscillators in semiconductors, and of
using the pseudospin-transfer effect as an experimental probe of intersubband plasmons.
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Introduction.—The layer degree of freedom in semicon-
ductor bilayers is often regarded [1] as an effective
spin-1=2 pseudospin degree of freedom in which electrons
in the top layer are assigned one pseudospin state, and
electrons in the other layer the opposite one. In the quan-
tum Hall regime [2] (high magnetic field), or, possibly, at
zero magnetic field but extremely low densities [3], elec-
tron bilayers are sometimes pseudospin ferromagnets. The
appearance of these broken-symmetry states has motivated
a long-standing interest in phenomena which are pseudo-
spin analogs of the very robust magnetoelectric effects
which underpin spintronics in ferromagnetic metals.
Although spontaneous pseudospin polarization does not
usually occur at zero field, tunneling between the two
layers acts as an effective magnetic field which leads to a
finite pseudospin magnetization and to a pseudospin reso-
nance analogous to the ferromagnetic resonance of con-
ventional magnetized materials. This resonance—better
known in the semiconductor literature as the transverse
or intersubband plasmon [4]—is of fundamental interest
because both its frequency and its linewidth depend sensi-
tively on many-body effects which cannot be completely
described in the random phase approximation (RPA) [5].

This Letter develops the theory of the pseudospin reso-
nance in three ways. First of all, we apply a new theoreti-
cal approach which is distinctly superior to the RPA [6]
and its extensions [7], becoming exact in the limit in which
the difference V� between interlayer and intralayer
electron-electron interaction is small. In particular, the
calculation of the linewidth to second order in V� is exact
and equivalent to the calculation of the Gilbert damping
[8,9] in real spin dynamics. Second, we point out the
feasibility of a new semiconductor device, which is analo-
gous to the spin-transfer oscillator [10] of ordinary spin-
tronics. In a spin-transfer oscillator, spin-polarized cur-
rents drive ferromagnetic-resonance collective spin-
dynamics in the presence of applied fields strong enough
to oppose hysteretic switching. In a semiconductor bilayer
pseudospin-polarized currents (corresponding to an inter-

layer tunneling current, easily realizable using individual-
layer contacting techniques [11]) could, provided that the
resonance is sufficiently sharp, drive collective pseudospin
dynamics and yield a device with similar functionality.
Finally, we point out that the possibility of driving trans-
verse plasmons by means of a tunneling current opens a
new avenue for experimental studies of these modes, which
have so far been studied only by inelastic light scattering.

The model.—In a bilayer, electrons in the same layer
interact through the two-dimensional (2D) Coulomb inter-
action Vs�q� � 2�e2=��q� (� is the dielectric constant),
while electrons in different layers are coupled through the
interlayer Coulomb interaction Vd�q� � Vs�q�e

�qd. The
fact that Vs � Vd is ultimately responsible for a nonzero
intrinsic linewidth of the pseudospin resonance. We as-
sume a spatially constant interlayer tunneling amplitude
which we denote by �SAS=2 and present our theory using a
pseudospin representation in which the tunneling term is
diagonal, i.e., the representation in which j"i refers to the
symmetric combination of single-layer states and j#i to the
antisymmetric combination. The total Hamiltonian is then
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Here � is the real-spin label, � is the pseudospin label, S is
the sample area, �̂q �
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Ŝaq �
P

k;�;�;�ĉ
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density and the pseudospin operators (�a being Pauli ma-
trices with a � x, y, z), Ŝatot � Ŝaq�0, and, finally, V��q� �
�Vs�q� � Vd�q��=2.

The interlayer tunneling term / �SAS acts as a
pseudospin-magnetic field in the ẑ direction. The pseudo-
spin resonance then involves collective precession around
this pseudospin field, with ŷ-direction pseudospins repre-
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senting current flowing between the layers and x̂-direction
pseudospins representing charge accumulation in one of
the layers. Note also that, in the representation chosen
above, the last term in Eq. (1) breaks rotational invariance
around the ẑ axis in pseudospin space.

Theory.—The theory we develop in this Letter is based
on the observation that the difference between the intra and
the interlayer interaction V��q� � �e2�1� e�qd�=��q� is
always smaller than �e2d=�, which becomes a small per-
turbation when d	 max�rsaB; aB=r2

s�. Here rs �
��na2

B�
�1=2 is the Wigner-Seitz density parameter and

aB � �=�me2� is the Bohr radius. The above inequality
guarantees that the last term in Eq. (1) is a small perturba-
tion either compared to the kinetic energy [
e2=�r2

s�aB�]
which dominates in the high-density limit, or compared to
the interaction energy [
e2=�rs�aB�] which dominates in
the low-density limit. We will, therefore, perform a system-
atic expansion for the pseudospin resonance frequency and
damping rate in powers of V��q�. Our approach will be
asymptotically exact in the limit d	 aB and is expected to
be qualitatively correct for d
 aB.

We determine the properties of the pseudospin reso-
nance by evaluating the transverse pseudospin response
function �SxSx�q;!� � hhŜ

x
q; Ŝx�qii!=S, where we have in-

troduced the Kubo product hhÂ; B̂ii! � �ilim�!0��R
�1
0 dtei!te��th�GSj�Â�t�; B̂�0��j�GSi [12], j�GSi being

the ground state. Since our aim is to calculate the trans-
verse mode at q � 0 we will focus on the response function
�SxSx�!� � �SxSx�q � 0; !�. The in-plane pseudospin op-
erators satisfy the Heisenberg equations of motion,
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Ŝxtot, which measures the difference between charges in the
two layers, is a good quantum number when �SAS ! 0,
whereas Ŝytot is not conserved even in this limit because of
the pseudospin-dependent interactions. When d! 0 these
equations reduce to a pseudospin version of Larmor’s
theorem, in which the precession is undamped and its
frequency is given exactly by the noninteracting particle
value �SAS.

Our theory starts by making repeated use of Eqs. (2) in
the Kubo product identity [12,13]: hhÂ;B̂ii!�
h�GSj�Â;B̂�j�GSi=!� ihh@tÂ;B̂ii!=!. After some alge-
braic manipulations we arrive at the following exact ex-
pression for �SxSx�!�:
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x
k0 Ŝ
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When V� is set to zero (d! 0), the interaction part of the
Hamiltonian is pseudospin invariant. Larmor’s theorem
then applies to the pseudospin degree of freedom and
only the first term on the right-hand side of Eq. (3) sur-

vives. We refer to the Hamiltonian Ĥ at V� � 0 as the
reference system (RS), on which the perturbative scheme
outlined below is based.

The key idea now is to expand �SxSx�!� in powers of V�.
For example, the ground-state pseudospin magnetization
Mz is expanded as Mz �Mz

0 �Mz
1 �Mz

2 � . . . ,
where the nth term Mz

n is O�Vn��. The quantities f, g,
and L are similarly expanded. Note that the zeroth order of
f�k�, denoted by f0�k�, is a nonzero difference between
longitudinal and transverse pseudospin structure factors.
On the other hand, the zeroth order of g�k� vanishes
because the RS Hamiltonian is invariant under rotations
by 90 degrees about the ẑ axis in pseudospin space which
map Ŝx ! Ŝy and Ŝy ! �Ŝx.

The pseudospin resonance frequency is the solution of
the equation Re���1

SxSx�!?�� � 0. To appreciate the power
of Eq. (3) we first use it to find !? to first order in �d �
d=aB. After some straightforward algebraic manipulations
we find that

 !2
? � �2

SAS �
4�SASV��0�

Mz
0

1

S2

X
k

f0�k� �O� �d2�: (4)

This equation is exact to all orders in the intralayer
Coulomb interaction Vs. In the high-density limit one can
find simple analytical expressions for Mz

0 and f0�k�,
Mz

0 � �nS � nAS�=2 and S�2P
kf0�k� � �M

z
0�

2=2. Here
n� � k2

F�=�2�� are the band occupation factors, kF� being
the Fermi wave number for band �. In this limit Eq. (4)
simplifies to !2
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SAS � 2�SASM

z
0V��0�. The second

term, which supplies the interaction induced shift in the
pseudospin resonance position, is a factor of 2 smaller than
in RPA theory [6]. The source of this difference is easy to
understand: our calculation includes the first-order ex-
change corrections to the resonance frequency which are
absent in the RPA. Since V� is independent of q at first
order in d, corresponding to a 	-function interaction in real
space, the like-real-spin contribution to the resonance po-
sition shift present in the RPA is canceled by exchange
interactions.

The main object of this work is to estimate the resonance
decay rate, which appears first at second-order in V� and is
zero in the RPA (additional interaction corrections to the
resonance position Re�!?� also appear at second order
[14]). The linewidth of the pseudospin resonance
[�� 2Im�!?�] is given, up to second order in d, by

PRL 99, 206802 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
16 NOVEMBER 2007

206802-2



 �? � �
4V2
��0��SAS

Mz
0

lim
!!�SAS

Im‘0�!�
!

; (5)

where ‘0�!� is the wave-vector sum of the four-spin cor-
relation function L0�k;k0; !�. This quantity can be eval-

uated analytically in the high-density limit in which it is
dominated by a decay process where two particle-hole
pairs are excited out of the Fermi sea, one involving a
pseudospin flip. The second particle-hole excitation is
diagonal in pseudospin and absorbs the momentum emitted
by the first. We find that

 Im ‘0�!� � �
�

2S3

X
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X
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where nk;� � ��kF� � jkj� and ���k;k0� � k 
 k0=m�
��SAS [15]. In Fig. 1 we illustrate the dependence of
Im‘0�!� on !. The !3 dependence at small ! is the
double-particle-hole excitation manifestation of the famil-
iar Pauli-blocking reduction in the excitation density of
states in a Fermi sea which underlies Fermi liquid theory;
damping drops much more rapidly at low energies than for
ferromagnetic resonance [9] dominated by single-particle
decay processes. Equations (3)–(6) constitute the most
important results of this work and provide, to the best of
our knowledge, the first microscopic theory of the pseudo-
spin resonance linewidth.

Numerical results and discussion.—Typical numerical
results for �?, calculated from Eqs. (5) and (6), are shown
in Figs. 2 and 3. In Fig. 2 we show �? as a function of �SAS

for a bilayer with density n � 8:3� 1010 cm�2 and inter-
layer distance d � L� w � 60 �A. Here L � 40 �A is the
width of each quantum well and w � 20 �A is the barrier
width (we have chosen material parameters corresponding
to a GaAs=AlGaAs bilayer). The nonmonotonic behavior
of �? is entirely due to the crossover in the behavior of ‘0

as a function of ! from the low frequency regime, where
Im‘0�!� / !

3, to the large frequency regime where
Im‘0�!� ! const (see Fig. 1). The nonanalytic behavior

of �? for �SAS 
 3 meV is due to the transition from the
situation in which both symmetric and antisymmetric
bands are occupied to that in which only the symmetric
band is occupied. In Fig. 3 we illustrate the dependence of
�? on density for a fixed value of �SAS � 1:48 meV.
Since the resonance frequency is close to �SAS, these
calculations predict that the pseudospin resonance can be
very sharp, especially when �SAS is small compared to the
Fermi energy of the bilayer. On physical grounds we ex-
pect that the main effect of going to higher order in d will
be to replace the bare interlayer interaction in Eq. (5) by a
weaker screened interaction, further reducing the damping.
Note also that the intrinsic linewidth in Eq. (5) provides a
lower bound for the actual linewidth: disorder, for ex-
ample, will tend to increase the linewidth, but this is an
extrinsic effect that can, in principle, be reduced by im-
proving the sample quality.

Our theory of the resonance amounts to the derivation of
an anisotropic, linearized pseudospin Landau-Lifshitz-
Slonczewski equation:
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FIG. 1 (color online). Imaginary part of the dynamical re-
sponse function ‘0�!� (in units of eV�1 nm�6) as a function of
! for a bilayer electron gas with n � 8:3� 1010 cm�2 and
�SAS � 1:48 meV. The solid (red) line is the asymptotic result
Im‘0�!! 1� � �mn

2=32. Inset: a zoom of the low-energy
region. The solid (red) curve is the expression Im‘0�!� � �
!

3

with 
 ’ 3:41� 10�4 [16].

FIG. 2 (color online). Intrinsic linewidth �? of the pseudospin
resonance as a function of �SAS for a bilayer with density n �
8:3� 1010 cm�2 and d � 60 �A. The S2D curve was evaluated
using the bare 2D interactions Vs�q� and Vd�q� defined above,
whereas the Q2D result was evaluated with more realistic
interactions weakened by form factors [17] which account for
typical quantum well widths.
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where Ma is the average macroscopic pseudospin polar-
ization, which becomes equal to hŜatoti in the limit I ! 0. In
the first line of Eq. (7) we have added a Slonczewski [18]
pseudospin-transfer term proportional to the tunnel current
I, which is injected in one layer and extracted from the
other. As in the ferromagnetic case, it is the reaction
counterpart of the torque which acts on the transport qua-
siparticles to enable their transfer between layers upon
moving through the sample, and must be present because
of the nearly exact conservation of pseudospin by inter-
actions. In the second line of Eq. (7) we have added a
Gilbert-like damping term / @tMx (the anisotropy of the
Gilbert damping in the present problem derives from the
strongly anisotropic character of the interaction part of
the Hamiltonian). These equations [which describe a
damped pseudospin precession of frequency !? and
damping rate �? about the steady state values My�t!
1� � I=�e�SAS�, Mx�t! 1� � 0] are similar to those
which describe spin-transfer torque oscillators [10] in fer-
romagnets and suggest that similar, and possibly more
flexible, devices could be realized in semiconductor bi-
layers. We anticipate that the pseudospin resonance will
have negative rather than positive dispersion, because of
the q dependence of V��q�. The roles of this property, and
the fact that the single-particle and collective excitation
frequencies are not widely separated, are difficult to fully
anticipate. Nevertheless, this work suggests that experi-
mental studies of nonlinear transport in bilayers have great
potential.
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