35 research outputs found

    Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook

    Get PDF
    In spite of remarkable improvements in cancer treatments and survivorship, cancer still remains as one of the major causes of death worldwide. Although current standards of care provide encouraging results, they still cause severe systemic toxicity and also fail in preventing recurrence of the disease. In order to address these issues, biomaterial-based implantable drug delivery systems (DDSs) have emerged as promising therapeutic platforms, which allow local administration of drugs directly to the tumor site. Owing to the unique properties of biopolymers, they have been used in a variety of ways to institute biodegradable implantable DDSs that exert precise spatiotemporal control over the release of therapeutic drug. Here, the most recent advances in biopolymer-based DDSs for suppressing tumor growth and preventing tumor recurrence are reviewed. Novel emerging biopolymers as well as cutting-edge polymeric microdevices deployed as implantable antitumor DDSs are discussed. Finally, a review of a new therapeutic modality within the field, which is based on implantable biopolymeric DDSs, is given

    Encapsulation of hemoglobin within mPEG- b

    No full text

    Polycaprolactone Electrospun Fiber Mats Prepared Using Benign Solvents: Blending with Copper(II)‐Chitosan Increases the Secretion of Vascular Endothelial Growth Factor in a Bone Marrow Stromal Cell Line

    Get PDF
    Inducing the formation of new blood vessels (angiogenesis) is an essential requirement for successful tissue engineering. Approaches have been proposed to enhance angiogenesis using growth factors and other biomolecules; however, this approaches present drawbacks in terms of high cost and patient safety. Copper is known to effectively regulate angiogenesis and can offer a more cost‐effective alternative than the direct use of growth factors. With this study, a strategy to incorporate copper in electrospun fibrous scaffolds with pro‐angiogenic properties is presented. Polycaprolactone (PCL) and copper(II)‐chitosan are electrospun using benign solvents. The morphological and physicochemical properties of the fiber mats are investigated through scanning electron microscopy (SEM), static contact angle measurements, energy dispersive X‐ray, and Fourier‐transform infrared spectroscopies. Scaffold stability in phosphate buffered saline at 37 °C is monitored over 1 week. A bone marrow stromal cell line (ST‐2) is cultured for 7 days and its behavior is evaluated using SEM, fluorescence microscopy and a tetrazolium salt‐based colorimetric assay. Results confirm that PCL/copper(II)‐chitosan is suitable for electrospinning. The fiber mats are biocompatible and favor cell colonization and infiltration. Most notably, the angiogenic potential of PCL/copper(II)‐chitosan blends is confirmed by a three‐fold increase in VEGF secretion by ST‐2 cells in the presence of copper(II)‐chitosan
    corecore