7 research outputs found

    Temperature studies of Raman spectra in MnBi2Te4 and MnSb2Te4 magnetic topological insulators

    Get PDF
    Raman spectra of magnetic topological crystalline insulators in a wide temperature range including the magnetic ordering region are studied in detail. The anharmonicity parameters and Grüneisen mode parameters of Raman-active phonons in the studied crystals have been determined. It has been shown that the temperature dependence of the frequency of the (~48 cm–1) phonon in MnBi2Te4 coincides within ±0.1 cm–1 with the standard anharmonic model disregarding the spin–phonon coupling. The polarization dependences of Raman spectra in the MnSb2Te4 crystals indicate that Sb and Mn atoms are strongly mixed in them unlike the isostructural MnBi2Te4 crystals.This work was supported by the Azerbaijan Ministry of Science and Education (program “Development of the Preparation Technology of Multifunctional Convertors Based on Nanostructures”). E.V.C. acknowledges the s-upport of St. Petersburg State University (project no. 94031444).Peer reviewe

    Crystal structure and Raman-active lattice vibrations of magnetic topological insulators MnBi2Te4·n(Bi2Te3) (n=0, 1,⋯,6)

    No full text
    Further to the structure of the intrinsic magnetic topological insulators MnBi2Te4⋅n(Bi2Te3) with n0 overwhelmingly dominates by the cooperative atomic displacements in the quintuple building blocks.This work was performed within the research program “Development of preparation technology of multifunctional convertors based on nanosized structures” and was supported by TÜBITAK- ANAS Project No. 120N296. M.M.O. acknowledges the support by Spanish Ministerio de Ciencia e Innovación (Grant No. PID2019-103910GB-100). E.V.C. acknowledges support from Saint Petersburg State University (Project ID No. 90383050).Peer reviewe

    Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure

    No full text
    It is shown that MnTe-Bi2Te3 system is quasi-binary and in fact hosts three intermediate phases. Along with already known MnBi2Te4 phase, another two, MnBi4Te7 and MnBi6Te10 have been found to exist. All the phases melt incongruently in a very narrow temperature range of 577–590 °C via peritectic reactions. Directional crystal growth results in hetero-phase ingots due to the narrow compositional range and narrow primary crystallization fields. The crystal structure of each phase is a derivation of the prototype tetradymit-type layered structure and the phases constitute a new homologous series with the chemical formula (MnTe)·n(Bi2Te3). X-ray diffraction patterns and Raman spectroscopy of the sorted-out single phase samples show that different phases have different number of the seven (7)- and five (5)-layer blocks and their different stacking manner in the unit cell. In particular, MnBi2Te4 exhibits the -7-7-7-, MnBi4Te7 -5-7-5-7-, and MnBi6Te10 -5-5-7-5-5-7- sequence of the blocks. Thus, these structures are the first derivatives of Bi2Te3 structure to contain a transition metal cation Mn2+

    Infrared spectroscopic ellipsometry and optical spectroscopy of plasmons in classic 3D topological insulators

    No full text
    Narrow bandgap BiSe, BiTe, and SbTe, commonly referred to as classic 3D topological insulators, were studied at room temperature by spectroscopic ellipsometry and optical reflection spectroscopy over the mid-IR-near-infrared photon energy range. Complementarily, Hall measurements were performed. Plasmons in optical loss function and reflection coefficient were identified. The conventional approach based on the high frequency dielectric constant was shown to work well in the description of plasmons in BiSe and SbTe and to fail in the case of a similar compound, BiTe. The obtained results are discussed in terms of single- and multivalley approaches to the studied samples with taking the details of the calculated band structure into account.This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan (Grant No. EI F-BGM-4-RFTF1/2017-21/04/1-M-02 and EİF-BGM-3-BRFTF-2+/2017-15/02/1), the Russian Foundation for Basic Research (Grant No. 18-52-06009), and the Saint Petersburg State University grant for scientific investigations (Grant No. 15.61.202.2015)

    Prediction and observation of an antiferromagnetic topological insulator

    No full text
    Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics, such as the quantum anomalous Hall effect and chiral Majorana fermions. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic and electronic properties of these materials, restricting the observation of important effects to very low temperatures. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBiTe. The antiferromagnetic ordering that MnBiTe shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ topological classification; ℤ = 1 for MnBiTe, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBiTe exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling and axion electrodynamics. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect and chiral Majorana fermions.We acknowledge support by the Basque Departamento de Educacion, UPV/EHU (grant number IT-756-13), the Spanish Ministerio de Economia y Competitividad (MINECO grant number FIS2016-75862-P), and the Academic D.I. Mendeleev Fund Program of Tomsk State University (project number 8.1.01.2018). Support from the Saint Petersburg State University grant for scientific investigations (grant ID 40990069), the Russian Science Foundation (grants number 18-12-00062 for part of the photoemission measurements and 18-12-00169 for part of the calculations of topological invariants and tight-binding bandstructure calculations), the Russian Foundation for Basic Research (grant number 18-52-06009), and the Science Development Foundation under the President of the Republic of Azerbaijan (grant number EİF-BGM-4-RFTF-1/2017-21/04/1-M-02) is also acknowledged. M.M.O. acknowledges support by the Diputación Foral de Gipuzkoa (project number 2018-CIEN-000025-01). I.I.K. and A.M.S. acknowledge partial support from the CERIC-ERIC consortium for the stay at the Elettra synchrotron. The ARPES measurements at HiSOR were performed with the approval of the Proposal Assessing Committee (proposal numbers 18AG020, 18BU005). The support of the German Research Foundation (DFG) is acknowledged by A.U.B.W., A.I. and B.B. within Collaborative Research Center 1143 (SFB 1143, project ID 247310070); by A.Z., A.E. and A.I. within Special Priority Program 1666 Topological Insulators; by H.B. and F.R. within Collaborative Research Center 1170; and by A.Z. and A.I. within the ERANET-Chemistry Program (RU 776/15-1). H.B., A.U.B.W., A.A., V.K., B.B., F.R. and A.I. acknowledge financial support from the DFG through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter – ct.qmat (EXC 2147, project ID 39085490). A.E. acknowledges support by the OeAD grant numbers HR 07/2018 and PL 03/2018. This work was also supported by the Fundamental Research Program of the State Academies of Sciences, line of research III.23. A.K. was financially supported by KAKENHI number 17H06138 and 18H03683. I.P.R. acknowledges support by the Ministry of Education and Science of the Russian Federation within the framework of the governmental program Megagrants (state task number 3.8895.2017/P220). E.V.C. acknowledges financial support by the Gobierno Vasco-UPV/EHU project (IT1246-19). S.K. acknowledges financial support from an Overseas Postdoctoral Fellowship, SERB-India (OPDF award number SB/OS/PDF-060/2015-16). J.S.-B.acknowledges financial support from the Impuls-und Vernetzungsfonds der Helmholtz-Gemeinschaft under grant number HRSF-0067 (Helmholtz-Russia Joint Research Group). The calculations were performed in Donostia International Physics Center, in the research park of Saint Petersburg State University Computing Center (http://cc.spbu.ru), and at Tomsk State Universit
    corecore