3 research outputs found

    The Development of Butterfly pea (Clitoria ternatea) Flower Powder Drink by Co-crystallization

    Get PDF
    Abstract— A method consist of co-crystallization, agglomeration, drying has been applied to develop a powder drink from butterfly pea flower (Clitoria ternatea) extract. The butterfly pea flower extract was concentrated by vacuum evaporation and incorporated with supersaturated sugar solution (more than 90 Brix), agglomerated and dried at 60oC for 12 hours.  The anthocyanin stability and antioxidant activity of the powder drink was evaluated for 28 days at three levels of temperature (room temperature, 40oC, and 50oC). The stability of anthocyanin decreased as the increase of storage temperature. The half-life of anthocyanin in the powder drink at respective temperature was 27.99, 16.53, and 9.81 days. Despite the anthocyanin significantly degraded, the decrease of antioxidant activity of the powder drink was not significant. Hence, the beneficial effect of the butterfly pea powder drink retained.   Keywords— anthocyanin; butterfly pea; co-crystallization; stability; suga

    The colour degradation of anthocyanin-rich extract from butterfly pea (<i>Clitoria ternatea</i> L.) petal in various solvents at pH 7

    No full text
    <p>A spectroscopic study was conducted to evaluate the colour degradation mechanism of anthocyanin-rich extract from butterfly pea petal. The extract was diluted in four different solvent systems, which were buffer solution pH 7 (AQ7) and the mixture of organic solvent with buffer solution pH 7 (4:1 v/v). The organic cosolvent involved were methanol (ME7), ethanol (ET7) and acetone (AC7). The samples were stored in containers with 0% and 50% headspace, and their colour intensity, total anthocyanin and hypsochromic shift were evaluated periodically. The rank of colour and anthocyanin degradation from the biggest was AQ7 > ME7 > ET7 > AC7. The longest hypsochromic shift was AQ7 > ME7 > ET7, while in AC7 the shift was absent. There was evidence that the volume of package headspace provoked colour stability. The colour degradation in AC7 was proposed to occur through hydrophobic interaction unfolding, and in AQ7 was through the deacylation, while in ME7 and ET7 was due to both mechanisms.</p
    corecore