17 research outputs found

    Building a Framework for ICT Project Implementation and Evaluation

    Get PDF
    In this technological era with a wide range of Information and Communication Technologies (ICT) resources, organizations are dealing with massive amounts of data, highly equipped infrastructure, and a sustainable business environment and are attempting to obtain competitive advantages while securing their capital in an aggressive market environment. The use of technology offers a chance for firms to produce better quality products and services, in addition to creating a productive work environment and encouraging all types of stakeholders to take more interest in organizational business activities. The evaluation of this massive investment with the proper framework is a real challenge for almost every organization. This paper discusses the different approaches used for evaluating ICT projects, such as pre- and post- implementation evaluations through the measurement of financial and non-financial returns. This study proposes a framework to overcome the main issues related to ICT project implementation and evaluation. The details about possible phases and steps further enhance the reader’s understanding of the use and implementation of the framework in any industry. The study has implications both for researchers working in this field and for ICT decision makers from any industry to improve their decision-making processes for new projects using pre- and post-implementation evaluations with the help of the proposed framework

    Security in Electronic Business

    No full text
    Abstract A crucial area of electronic transactions is the domain of electronic commerce. Yet, a large number of people do not want to transact online as they are not sure of the level of security that the transaction would be provided by the site and the technology used by the sites. According to surveys, one of the factors affecting the spread of ecommerce is the (lack of) security measures that assure both businesses and their customers that the business relationship and transactions will be carried out in secure manner. This paper describes the security requirements for electronic Business application and attempts to discuss the method and ways to be used to meet them

    Tunicate swarm algorithm with deep convolutional neural network-driven colorectal cancer classification from histopathological imaging data

    Get PDF
    Colorectal cancer (CRC) is one of the most popular cancers among both men and women, with increasing incidence. The enhanced analytical load data from the pathology laboratory, integrated with described intra- and inter-variabilities through the calculation of biomarkers, has prompted the quest for robust machine-based approaches in combination with routine practice. In histopathology, deep learning (DL) techniques have been applied at large due to their potential for supporting the analysis and forecasting of medically appropriate molecular phenotypes and microsatellite instability. Considering this background, the current research work presents a metaheuristics technique with deep convolutional neural network-based colorectal cancer classification based on histopathological imaging data (MDCNN-C3HI). The presented MDCNN-C3HI technique majorly examines the histopathological images for the classification of colorectal cancer (CRC). At the initial stage, the MDCNN-C3HI technique applies a bilateral filtering approach to get rid of the noise. Then, the proposed MDCNN-C3HI technique uses an enhanced capsule network with the Adam optimizer for the extraction of feature vectors. For CRC classification, the MDCNN-C3HI technique uses a DL modified neural network classifier, whereas the tunicate swarm algorithm is used to fine-tune its hyperparameters. To demonstrate the enhanced performance of the proposed MDCNN-C3HI technique on CRC classification, a wide range of experiments was conducted. The outcomes from the extensive experimentation procedure confirmed the superior performance of the proposed MDCNN-C3HI technique over other existing techniques, achieving a maximum accuracy of 99.45%, a sensitivity of 99.45% and a specificity of 99.45%

    Improving surgery operations by means of cloud systems and distributed user interfaces

    No full text
    Surgical interventions are usually performed in an operation room; however, access to the information by the medical team members during the intervention is limited. While in conversations with the medical staff, we observed that they attach significant importance to the improvement of the information and communication direct access by queries during the process in real time. It is due to the fact that the procedure is rather slow and there is lack of interaction with the systems in the operation room. These systems can be integrated on the Cloud adding new functionalities to the existing systems the medical expedients are processed. Therefore, such a communication system needs to be built upon the information and interaction access specifically designed and developed to aid the medical specialists. Copyright 2014 ACM.Sin financiación0.133 SJR (2015) Q4, 340/665 Artificial Intelligence, 638/1397 Computer Networks and Communications, 167/353 Computer Vision and Pattern Recognition, 204/346 Human-Computer Interaction, 802/1421 Software.UE

    Artificial Intelligence Based COVID-19 Detection and Classification Model on Chest X-ray Images

    No full text
    Diagnostic and predictive models of disease have been growing rapidly due to developments in the field of healthcare. Accurate and early diagnosis of COVID-19 is an underlying process for controlling the spread of this deadly disease and its death rates. The chest radiology (CT) scan is an effective device for the diagnosis and earlier management of COVID-19, meanwhile, the virus mainly targets the respiratory system. Chest X-ray (CXR) images are extremely helpful in the effective diagnosis of COVID-19 due to their rapid outcomes, cost-effectiveness, and availability. Although the radiological image-based diagnosis method seems faster and accomplishes a better recognition rate in the early phase of the epidemic, it requires healthcare experts to interpret the images. Thus, Artificial Intelligence (AI) technologies, such as the deep learning (DL) model, play an integral part in developing automated diagnosis process using CXR images. Therefore, this study designs a sine cosine optimization with DL-based disease detection and classification (SCODL-DDC) for COVID-19 on CXR images. The proposed SCODL-DDC technique examines the CXR images to identify and classify the occurrence of COVID-19. In particular, the SCODL-DDC technique uses the EfficientNet model for feature vector generation, and its hyperparameters can be adjusted by the SCO algorithm. Furthermore, the quantum neural network (QNN) model can be employed for an accurate COVID-19 classification process. Finally, the equilibrium optimizer (EO) is exploited for optimum parameter selection of the QNN model, showing the novelty of the work. The experimental results of the SCODL-DDC method exhibit the superior performance of the SCODL-DDC technique over other approaches

    Optimal Deep Stacked Sparse Autoencoder Based Osteosarcoma Detection and Classification Model

    No full text
    Osteosarcoma is a kind of bone cancer which generally starts to develop in the lengthy bones in the legs and arms. Because of an increase in occurrence of cancer and patient-specific treatment options, the detection and classification of cancer becomes a difficult process. The manual recognition of osteosarcoma necessitates expert knowledge and is time consuming. An earlier identification of osteosarcoma can reduce the death rate. With the development of new technologies, automated detection models can be exploited for medical image classification, thereby decreasing the expert’s reliance and resulting in timely identification. In recent times, an amount of Computer-Aided Detection (CAD) systems are available in the literature for the segmentation and detection of osteosarcoma using medicinal images. In this view, this research work develops a wind driven optimization with deep transfer learning enabled osteosarcoma detection and classification (WDODTL-ODC) method. The presented WDODTL-ODC model intends to determine the presence of osteosarcoma in the biomedical images. To accomplish this, the osteosarcoma model involves Gaussian filtering (GF) based on pre-processing and contrast enhancement techniques. In addition, deep transfer learning using a SqueezNet model is utilized as a featured extractor. At last, the Wind Driven Optimization (WDO) algorithm with a deep-stacked sparse auto-encoder (DSSAE) is employed for the classification process. The simulation outcome demonstrated that the WDODTL-ODC technique outperformed the existing models in the detection of osteosarcoma on biomedical images

    Application Layer-Based Denial-of-Service Attacks Detection against IoT-CoAP

    No full text
    Internet of Things (IoT) is a massive network based on tiny devices connected internally and to the internet. Each connected device is uniquely identified in this network through a dedicated IP address and can share the information with other devices. In contrast to its alternatives, IoT consumes less power and resources; however, this makes its devices more vulnerable to different types of attacks as they cannot execute heavy security protocols. Moreover, traditionally used heavy protocols for web-based communication, such as the Hyper Text Transport Protocol (HTTP) are quite costly to be executed on IoT devices, and thus specially designed lightweight protocols, such as the Constrained Application Protocol (CoAP) are employed for this purpose. However, while the CoAP remains widely-used, it is also susceptible to attacks, such as the Distributed Denial-of-Service (DDoS) attack, which aims to overwhelm the resources of the target and make them unavailable to legitimate users. While protocols, such as the Datagram Transport Layer Security (DTLS) and Lightweight and the Secure Protocol for Wireless Sensor Network (LSPWSN) can help in securing CoAP against DDoS attacks, they also have their limitations. DTLS is not designed for constrained devices and is considered as a heavy protocol. LSPWSN, on the other hand, operates on the network layer, in contrast to CoAP which operates on the application layer. This paper presents a machine learning model, using the CIDAD dataset (created on 11 July 2022), that can detect the DDoS attacks against CoAP with an accuracy of 98%
    corecore