22 research outputs found

    Bounded solution of Cauchy type singular integral equation of the first kind using differential transform method

    Get PDF
    In this paper, an efficient approximate solution for solving the Cauchy type singular integral equation of the first kind is presented. Bounded solution of the Cauchy type singular Integral equation is discussed. Two type of kernel, separable and convolution, are considered. The differential transform method is used in the solution. New theorems for transformation of Cauchy singular integrals are given with proofs. Approximate results areshown to illustrate the efficiency and accuracy of the approximate solution

    Approximate solution of singular integral equations of the first kind with Cauchy kernel

    Get PDF
    AbstractIn this work a study of efficient approximate methods for solving the Cauchy type singular integral equations (CSIEs) of the first kind, over a finite interval, is presented. In the solution, Chebyshev polynomials of the first kind, Tn(x), second kind, Un(x), third kind, Vn(x), and fourth kind, Wn(x), corresponding to respective weight functions W(1)(x)=(1−x2)−12, W(2)(x)=(1−x2)12,W(3)(x)=(1+x)12(1−x)−12 and W(4)(x)=(1+x)−12(1−x)12, have been used to obtain systems of linear algebraic equations. These systems are solved numerically. It is shown that for a linear force function the method of approximate solution gives an exact solution, and it cannot be generalized to any polynomial of degree n. Numerical results for other force functions are given to illustrate the efficiency and accuracy of the method

    Four-State Coupled-Line Resonator for Chipless RFID Tags Application

    No full text
    A novel quad-state coupled-line microstrip resonator is proposed for compact chipless radio frequency identification (RFID) tags. The proposed resonator can be reconfigured to present one of four possible states: 00, 01, 10, and 11, representing, no resonance, resonance at f2, resonance at f1, and resonance at both f1 and f2, respectively. The frequency span between f2 and f1 can be easily controlled, thereby reducing the required spectrum. Moreover, the proposed technique allows the storage of a large amount of data in a compact size to reduce the cost per bit. A multi-resonator prototype consisting of six resonators is designed, analyzed, and experimentally characterized. This prototype is implemented on the RT Duroid 5880 substrate with a dielectric constant of 2.2, loss tangent of 0.0009, and thickness of 0.79 mm. The designed configuration can be reconfigured for 46 codes. Two complete the RFID tags, including the six resonators and two orthogonally polarized transmitting and receiving antennas, are implemented and tested. The first tag code is designed for all ones, 111111111111, and the second tag is designed as 101010101010 code. Experimental results show good agreement with the simulation

    A Novel Printable Tag of M-Shaped Strips for Chipless Radio-Frequency Identification in IoT Applications

    No full text
    There is a growing interest in chipless radio-frequency identification (RFID) technology for a number of Internet of things (IoT) applications. This is due to its advantages of being of low-cost, low-power, and fully printable. In addition, it enjoys ease of implementation. In this paper, we present a novel, compact, chipless radio-frequency identification (RFID) tag that can be read with either vertical or horizontal polarization within its frequency bandwidth. This increases the sturdiness and detection ability of the RFID system. In addition, the difference between the vertical and horizontal responses can be used for tag identification. The proposed tag uses strip length variations to double the coding capacity and thereby reduce the overall size by almost 50%. It has a coding capacity of 20 bits in the operating bandwidth 3 GHz–7.5 GHz, and its spatial density is approximately 11 bits/cm2. The proposed tag has a 4.44 bits/GHz spectral capacity, 2.44 bits/cm2/GHz encoding capacity, a spatial density at the center frequency of 358.33 bits/λ2, and an encoding capacity at the center frequency of 79.63 bits/λ2/GHz. A prototype is fabricated and experimentally tested at a distance of 10 cm from the RFID reader system. Then, we compare the measured results with the simulations. The simulated results are in reasonable agreement with the simulated ones

    Compact Printable Inverted-M Shaped Chipless RFID Tag Using Dual-Polarized Excitation

    No full text
    A novel and compact dual-polarized (DP) chipless radio-frequency identification (RFID) tag is presented in this paper. This tag can read both vertical and horizontal orientations within its frequency band, which improves the robustness and detection capability of the RFID system. The proposed tag makes use of the slot length variation encoding technique to improve the encoding capacity. This technique can duplicate the encoding capacity, thereby reducing the overall tag size by almost 50%. In particular, the proposed tag has an encoding capacity of 20 bits in the 3−8 GHz frequency band and achieves data density of around 15.15 bits/cm2. Three prototypes are fabricated and tested outside an anechoic chamber. Furthermore, one tag is tested at different distances (10 cm, 30 cm, and 60 cm) from the reader and the measured results are compared. The simulated and measured results are in reasonable agreement, with acceptable shifts at some frequencies due to fabrication and experimental errors

    Design of Low-Profile Single- and Dual-Band Antennas for IoT Applications

    No full text
    This paper presents novel low-cost single- and dual-band microstrip patch antennas. The proposed antennas are realized on a square microstrip patch etched symmetrically with four slots. The antenna is designed to have low cost and reduced size to use in Internet of things (IoT) applications. The antennas provide a reconfigurable architecture that allows operation in different wireless communication bands. The proposed structure can be adjusted to operate either in single band or in dual-band operation. Two prototypes are implemented and evaluated. The first structure works at a single resonance frequency (f1 = 2.4 GHz); however, the second configuration works at two resonance frequencies (f1 = 2.4 GHz and f2 = 2.8 GHz) within the same size. These antennas use a low-cost FR-4 dielectric substrate. The 2.4 GHz is allotted for the industrial, scientific, and medical (ISM) band, and the 2.8 GHz is allocated to verify the concept and can be adjusted to meet the user’s requirements. The measurement of the fabricated antennas closely matches the simulated results

    New Compact Antenna Array for MIMO Internet of Things Applications

    No full text
    A communication system is proposed for the Internet of Things (IoT) applications in desert areas with extended coverage of regional area network requirements. The system implements a developed six-element array that operates at a 2.45 GHz frequency band and is optimized to reduce the size and limit element coupling to less than −20 dB. Analysis of the proposed system involves a multiple-input multiple-output (MIMO) operation to obtain the diversity gain and spectral efficiency. In addition, the radiation efficiency of the proposed antenna is greater than 65% in the operation bandwidth (more than 30 MHz) with a peak of 73% at 2.45 GHz. Moreover, an adaptive beamforming system is presented based on monitoring the direction of arrival (DOA) of various signals using the root MUSIC algorithm and utilizing the DOA data in a minimum variance distortionless response (MVDR) technique beamformer. The developed array is found to have an envelope correlation coefficient (ECC) value of less than 0.013, mean effective gain (MEG) of more than 1 dB, diversity gain of more than 9.9 dB, and channel capacity loss (CCL) of less than 0.4 bits/s/Hz over the operation bandwidth. Adaptive beamforming is used to suppress interference and enhance the signal-to-interference noise ratio (SINR) and is found to achieve a data rate of more than 50 kbps for a coverage distance of up to 100 km with limited power signals
    corecore