5 research outputs found

    Knowledge and Perceptions of Final-Year Medical Students in Yemeni Universities about Generic Medicines

    Get PDF
    Objective: To investigate the knowledge and perceptions of final-year medical students in the Yemeni universities about generic medicines.Methods: A two-month cross-sectional survey was conducted among final-year medical students in three Yemeni universities; Sana’a University, University of Science and Technology and Thamar University in 2013.Results: One hundred and sixty-five medical students out of 270 responded to the present study, with a response rate of 61.1%. More than 60% of medical students were not introduced to bioequivalence of generic medicines during their undergraduate study, and 80.0% of them had a low desire to inquire about it during their study. In addition, more than 60.0% of them were unaware of the similarity of generic medicines to their brand equivalents in dosage form and dose. More than three-quarters of the medical students incorrectly perceived that generic medicines are inferior in quality (80.0%), less effective (58.0%) and with more side-effects (47.8%) than their brand equivalents. The medical students in the present disagreed about the need for more information on the safety and efficacy of generic medicines.Conclusions: Yemeni students need to further enhance their awareness and expand their knowledge about the concepts and principles of bioavailability and bioequivalence of generic medicines if they are to contribute appropriately to generic medicine use

    Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review

    No full text
    Cancer is a life-threatening disease and is considered to be among the leading causes of death worldwide. Chemoresistance, severe toxicity, relapse and metastasis are the major obstacles in cancer therapy. Therefore, introducing new therapeutic agents for cancer remains a priority to increase the range of effective treatments. Terpenoids, a large group of secondary metabolites, are derived from plant sources and are composed of several isoprene units. The high diversity of terpenoids has drawn attention to their potential anticancer and pharmacological activities. Some terpenoids exhibit an anticancer effect by triggering various stages of cancer progression, for example, suppressing the early stage of tumorigenesis via induction of cell cycle arrest, inhibiting cancer cell differentiation and activating apoptosis. At the late stage of cancer development, certain terpenoids are able to inhibit angiogenesis and metastasis via modulation of different intracellular signaling pathways. Significant progress in the identification of the mechanism of action and signaling pathways through which terpenoids exert their anticancer effects has been highlighted. Hence, in this review, the anticancer activities of twenty-five terpenoids are discussed in detail. In addition, this review provides insights on the current clinical trials and future directions towards the development of certain terpenoids as potential anticancer agents

    Associated Targets of the Antioxidant Cardioprotection of Ganoderma lucidum in Diabetic Cardiomyopathy by Using Open Targets Platform: A Systematic Review

    No full text
    Even with substantial advances in cardiovascular therapy, the morbidity and mortality rates of diabetic cardiomyopathy (DCM) continually increase. Hence, a feasible therapeutic approach is urgently needed. Objectives. This work is aimed at systemically reviewing literature and addressing cell targets in DCM through the possible cardioprotection of G. lucidum through its antioxidant effects by using the Open Targets Platform (OTP) website. Methods. The OTP website version of 19.11 was accessed in December 2019 to identify the studies in DCM involving G. lucidum. Results. Among the 157 cell targets associated with DCM, the mammalian target of rapamycin (mTOR) was shared by all evidence, drug, and text mining data with 0.08 score association. mTOR also had the highest score association 0.1 with autophagy in DCM. Among the 1731 studies of indexed PubMed articles on G. lucidum published between 1985 and 2019, 33 addressed the antioxidant effects of G. lucidum and its molecular signal pathways involving oxidative stress and therefore were included in the current work. Conclusion. mTOR is one of the targets by DCM and can be inhibited by the antioxidative properties of G. lucidum directly via scavenging radicals and indirectly via modulating mTOR signal pathways such as Wnt signaling pathway, Erk1/2 signaling, and NF-κB pathways

    Curcumin Prevents Cyclophosphamide-Induced Lung Injury in Rats by Suppressing Oxidative Stress and Apoptosis

    No full text
    Curcumin (CUR) has been used since ancient times to treat several ailments as it possesses many pharmacological activities. This study intended to explore the mechanism underlying the protective effects of CUR in remodeling oxidative stress and apoptotic signals in cyclophosphamide (CP)-induced pulmonary injury in albino rats. CUR was administered at a dose of 300 mg/kg/day for 7 days and on the seventh day a single dose of CP (200 mg/kg) was given. Histopathological and ultrastructural examinations of CP-intoxicated rats showed complete alveolar obstruction, thickened inter-alveolar septa, enlarged blood vessels, severe inflammatory edema with pyknotic nuclei, and disappearance of cytoplasmic organelles. Significant increases in caspase-3, malondialdehyde (MDA), and protein carbonyl (PCO) and significant decreases in superoxide dismutase (SOD) and glutathione peroxidase (GPx) were observed. In contrast, rats that received CUR showed clear and empty lumina with single row of pneumocytes, disappearance of edema, and no interstitial electron dense bodies in rats’ lung tissues. Additionally, CUR significantly reduced caspase-3, MDA, and PCO and increased SOD and GPx. In conclusion, these findings revealed the protective effects of CUR against CP-induced pulmonary injury in rats through suppressing oxidative damage and apoptosis

    Ameliorative Effect of Thymoquinone-Loaded PLGA Nanoparticles on Chronic Lung Injury Induced by Repetitive Intratracheal Instillation of Lipopolysaccharide in Rats

    Get PDF
    Thymoquinone (TQ), the active constituent of Nigella sativa, possesses several benefits in traditional and modern medicines. This study examined the effect of a single dose of Nano-TQ on chronic lung injury induced by repetitive intratracheal installation of lipopolysaccharide (LPS). Rats received LPS twice weekly for 8 weeks via intratracheal installation and a single dose of TQ-PLGA NPs on the day after the last dose of LPS. Six rats from each group were sacrificed after 8 and 10 weeks, and samples were collected for analysis. Repetitive intratracheal installation of LPS caused histopathological alterations, including partial or complete obstruction of the alveoli, interstitial edema, mild fibroblastic proliferation, fibrous strands besides lymphocytes and plasma infiltrations, suffered fetalization, bronchiectasis, hypertrophied arterioles, and others. Investigation of the ultrastructure revealed prominent necrotic pneumocytes with destructed chromatin and remnant of necrotic debris in the narrowing alveolar lumen in LPS-induced rats. TQ-PLGA NPs effectively ameliorated LPS-induced histopathological and ultrastructural alterations in the lung of rats. In addition, TQ-PLGA NPs significantly alleviated serum levels of IL-10 and TGF-β1 in LPS-induced rats. In conclusion, TQ-PLGA NPs prevented inflammation and tissue injury in the lungs of rats challenged with repetitive intratracheal installation of LPS. Therefore, TQ-PLGA NPs represent a promising candidate for the prevention of lung injury induced by LPS, pending further studies to determine its safety and exact protective mechanism
    corecore