16 research outputs found

    Electro-Discharge Machining of Zr67Cu11Ni10Ti9Be3: An Investigation on Hydroxyapatite Deposition and Surface Roughness

    Get PDF
    This study attempts to simultaneously machine and synthesize a biomimetic nanoporous hydroxyapatite coating on the Zr67Cu11Ni10Ti9Be3 bulk metallic glass (BMG) surface. The aim is to investigate and optimize the hydroxyapatite deposition rate and the surface roughness during the electro-discharge coating of Zr67Cu11Ni10Ti9Be3 BMG. Scanning Electron Microscopy (SEM), X-ray powder Diffraction (XRD) and Energy-dispersive X-ray Spectroscopy (EDS) were employed to characterize and analyze the results. Response Surface Methodology using D-optimum custom design approach was utilized to generate the models and optimize the input parameters. A globule nanostructured and nanoporous coating of about 25.2 µm thick, containing mainly Ca, O, and K were ascertained. Further XRD analysis confirmed the deposition of biocompatible oxides (HA, CaZrO3, and ZrO2) and hard ZrC coating on the Zr67Cu11Ni10Ti9Be3 BMG surface. A significant improvement in cell viability was observed in the HA electro-discharge coated BMG specimens. The numerical models for the Hydroxyapatite Deposition Rate (HDR) and Surface Roughness (SR) were developed and experimentally validated using the optimized parameters setting suggested by the software. The achieved average predicted error of 4.94 and 5.09% for the HDR and SR respectively confirmed the excellent reproducibility of the developed models

    Investigation of Coatings, Corrosion and Wear Characteristics of Machined Biomaterials through Hydroxyapatite Mixed-EDM Process: A Review

    Get PDF
    Together, 316L steel, magnesium-alloy, Ni-Ti, titanium-alloy, and cobalt-alloy are commonly employed biomaterials for biomedical applications due to their excellent mechanical characteristics and resistance to corrosion, even though at times they can be incompatible with the body. This is attributed to their poor biofunction, whereby they tend to release contaminants from their attenuated surfaces. Coating of the surface is therefore required to mitigate the release of contaminants. The coating of biomaterials can be achieved through either physical or chemical deposition techniques. However, a newly developed manufacturing process, known as powder mixed-electro discharge machining (PM-EDM), is enabling these biomaterials to be concurrently machined and coated. Thermoelectrical processes allow the migration and removal of the materials from the machined surface caused by melting and chemical reactions during the machining. Hydroxyapatite powder (HAp), yielding Ca, P, and O, is widely used to form biocompatible coatings. The HAp added-EDM process has been reported to significantly improve the coating properties, corrosion, and wear resistance, and biofunctions of biomaterials. This article extensively explores the current development of bio-coatings and the wear and corrosion characteristics of biomaterials through the HAp mixed-EDM process, including the importance of these for biomaterial performance. This review presents a comparative analysis of machined surface properties using the existing deposition methods and the EDM technique employing HAp. The dominance of the process factors over the performance is discussed thoroughly. This study also discusses challenges and areas for future research

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Background: Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. // Methods: We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. // Findings: We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middle-income countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in low-income countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. // Interpretation: Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between low-income, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Powder mixed-EDM for potential biomedical applications: A critical review

    No full text
    Powder mixed-electro discharge machining (PM-EDM) is a new emerging trend in research on electro-thermal process that can simultaneously shape and deposit a coating on the surface of the workpiece. PM-EDM is a hybridized form of EDM in which metallic powders are amalgamated in dielectric liquid to enhance both the machined surface condition and machining performance. Migration of materials on the cutting surface occurs by melting and chemical reactions during the operation from both the electrodes and metallic powders. 316L stainless steel, Ti-based alloys, Co-Mo-Cr-based alloys, magnesium and magnesium-based alloys are commonly utilized in manufacturing biomedical devices. These biomaterials, however, release toxic particles due to corrosion, wear, tear, and tiredness of the joint replacements through repeated loads and relative movements. Surfaces of bio-implants made from these biomaterials are therefore protected using bioactive and biocompatible coating. Several methods of deposition are used for coating purposes which have both advantage and drawback. This study proposes that the PM-EDM coating enhances the biomaterials’ mechanical characteristics, surface morphology, and topography. Through reflecting critical and analytical concerns, this review focuses extensively on the current progress of the PM-EDM process. Moreover, following various research initiatives, this paper outlines the critical challenges and future research scopes

    Bio-ceramic coatings adhesion and roughness of biomaterials through PM-EDM: a comprehensive review

    No full text
    Powder mixed-EDM is a newly emerging proposed manufacturing process which can simultaneously shape and coat the surface of conductive materials. Transformation of machined surface is occurred through melting and chemical reactions of the added powders, tools materials and dielectric fluid due to elevated temperature generation during the operation. Though the biomaterials such as titanium alloy, magnesium, 316 L SS and Co-Cr alloy attribute to higher mechanical strength, corrosion and wear resistance, and enough biocompatibility, these are limited to apply directly because of releasing the toxic elements and having inferior biological responses. Surfaces of bio-implants made from these biomaterials are therefore protected using bioactive and biocompatible coating. Hydroxyapatite is a bioceramic that possesses bone like element composition and excellent biocompatibility. The PM-EDM process with hydroxyapatite can enhance not only adhesion strength and roughness but also biocompatibility of the treated surface. It is proposed in this paper that carbide and oxide coating formation can improve the microhardness, bonding strength and roughness of surface of the substrates. This study comprehensively reports the current status of adhesion and surface coarseness of bio-ceramics based coating through PM-EDM process. A comparative critical analysis of employing bio-ceramic powder using various deposition techniques is presented in this review

    Assessment of PM-EDM cycle factors influence on machining responses and surface properties of biomaterials: A comprehensive review

    No full text
    Powder mixed-electro discharge machining (PM-EDM) is recently evolving machining technique which can simultaneously remove and modify the machined surface through thermo-electrical process. It is a modified form of EDM in which the conductive powder elements are added in the dielectric liquid to enhance machined surface characteristics and machining responses. The commonly used biomaterials such as 316L stainless steel, Ti-based alloy, Ni–Ti, Mg alloy, and Co–Mo–Cr alloy have excellent mechanical characteristics while the biofunction of these materials are not in satisfactory level. Due to higher hardness, brittleness, and heat resistant natures of the biomaterials, it is very challenging to machine them with conventional machining. Both the system efficiency and modified surface properties depend on the associated electrical and non-electrical factors of PM-EDM cycle. This review focuses on the influence of process factors such as current, pulse duration, tool-polarity, duty cycle, potential voltage, types of liquid, and added powder concentration on performance outputs including material removal and tool wear rate, coating thickness, coarseness, microhardness, coating adhesion bonding, biocompatibility, and resistant to corrosion. This study also discusses influence of various powders on machining and modified surface characteristics of biomaterials. The future research scopes and challenges of PM-EDM process are included in this study thoroughly
    corecore