12 research outputs found

    Insights into the Role of Chemokines, Damage-Associated Molecular Patterns, and Lymphocyte-Derived Mediators from Computational Models of Trauma-Induced Inflammation

    Full text link
    Significance: Traumatic injury elicits a complex, dynamic, multidimensional inflammatory response that is intertwined with complications such as multiple organ dysfunction and nosocomial infection. The complex interplay between inflammation and physiology in critical illness remains a challenge for translational research, including the extrapolation to human disease from animal models. Recent Advances: Over the past decade, we and others have attempted to decipher the biocomplexity of inflammation in these settings of acute illness, using computational models to improve clinical translation. In silico modeling has been suggested as a computationally based framework for integrating data derived from basic biology experiments as well as preclinical and clinical studies. Critical Issues: Extensive studies in cells, mice, and human blunt trauma patients have led us to suggest (i) that while an adequate level of inflammation is required for healing post-trauma, inflammation can be harmful when it becomes self-sustaining via a damage-associated molecular pattern/Toll-like receptor-driven feed-forward circuit; (ii) that chemokines play a central regulatory role in driving either self-resolving or self-maintaining inflammation that drives the early activation of both classical innate and more recently recognized lymphoid pathways; and (iii) the presence of multiple thresholds and feedback loops, which could significantly affect the propagation of inflammation across multiple body compartments. Future Directions: These insights from data-driven models into the primary drivers and interconnected networks of inflammation have been used to generate mechanistic computational models. Together, these models may be used to gain basic insights as well as serving to help define novel biomarkers and therapeutic targets. Antioxid. Redox Signal. 23, 1370?1387.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140310/1/ars.2015.6398.pd

    Elevated Admission Base Deficit Is Associated with a Complex Dynamic Network of Systemic Inflammation Which Drives Clinical Trajectories in Blunt Trauma Patients

    No full text
    We hypothesized that elevated base deficit (BD) ≥ 4 mEq/L upon admission could be associated with an altered inflammatory response, which in turn may impact differential clinical trajectories. Using clinical and biobank data from 472 blunt trauma survivors, 154 patients were identified after excluding patients who received prehospital IV fluids or had alcohol intoxication. From this subcohort, 84 patients had a BD ≥ 4 mEq/L and 70 patients with BD < 4 mEq/L. Three samples within the first 24 h were obtained from all patients and then daily up to day 7 after injury. Twenty-two cytokines and chemokines were assayed using Luminex™ and were analyzed using two-way ANOVA and dynamic network analysis (DyNA). Multiple mediators of the innate and lymphoid immune responses in the BD ≥ 4 group were elevated differentially upon admission and up to 16 h after injury. DyNA revealed a higher, sustained degree of interconnectivity of the inflammatory response in the BD ≥ 4 patients during the initial 16 h after injury. These results suggest that elevated admission BD is associated with differential immune/inflammatory pathways, which subsequently could predispose patients to follow a complicated clinical course

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore