73 research outputs found

    Knowledge and Perception of Diabetes and Available Services among Diabetic Patients in the State of Qatar

    Get PDF
    Introduction: Diabetes is a major public health concern in Qatar. This study examined diabetes knowledge and perception of available services for diabetes control among diabetic patients in Qatar.Methods: Data from 300 diabetic patients were collected through face-to-face interviews using a semi-structured questionnaire between February and May 2015 at Hamad Medical Corporation healthcare facilities in Qatar. Survey responses were represented as frequencies, and Chi-square tests were used to compare proportions across gender. A p-value of 0.05 was considered statistically significant.Results: 31% of patients had Type 1 Diabetes (T1D) (females 36.6%, males 26.5%) and 54% had Type 2 Diabetes (T2D) (males 56.6%, females 50%). Knowledge about diabetes types did not differ by sex (P=0.16). 32.3% of patients were treated for diabetes-related complications including: high cholesterol (39.2%), vision problems (33.1%), hypertension (30.0%), and foot problems (25.1 %). Most patients were diagnosed at primary care clinics (41.7%). During visits, 78.3% of patients reported that they were fully advised about different diabetes tests. 57.0% of patients had ?4 visits for diabetes checkups in the past 12 months. 66.7% of patients reported that they were confident or very confident in managing their diabetes as a result of their healthcare visits in the past year. The majority of patients reported receiving diabetes-related guidance from physicians (89.7%).Conclusions: Study participants had variable knowledge of diabetes, its complications and risk factors, and services available to diabetics. More comprehensive education and awareness about diabetes is recommended for both patients and family members. At the provider level, further improvement in patient counseling and promotion of available services can be beneficial

    Dynamic Changes in Circulating Endocrine FGF19 Subfamily and Fetuin-A in Response to Intralipid and Insulin Infusions in Healthy and PCOS Women

    Get PDF
    © Copyright © 2020 Ramanjaneya, Bensila, Bettahi, Jerobin, Samra, Aye, Alkasem, Siveen, Sathyapalan, Skarulis, Atkin and Abou-Samra. Background: The fibroblast growth factors (FGF) 19 subfamily, also referred to as endocrine FGFs, includes FGF19, FGF21, and FGF23 are metabolic hormones involved in the regulation of glucose and lipid metabolism. Fetuin-A is a hepatokine involved in the regulation of beta-cell function and insulin resistance. Endocrine FGFs and fetuin-A are dysregulated in metabolic disorders including obesity, type 2 diabetes, non-alcoholic fatty liver disease and polycystic ovary syndrome (PCOS). Our study was designed to examine the response of endocrine FGFs and fetuin-A to an acute intralipid, insulin infusion and exercise in PCOS and healthy women. Subjects and Measurements: Ten healthy and 11 PCOS subjects underwent 5-h saline infusions with a hyperinsulinemic-euglycemic clamp (HIEC) performed during the final 2 h. One week later, intralipid infusions were undertaken with a HIEC performed during the final 2 h. After an 8 week of exercise intervention the saline, intralipid, and HIEC were repeated. Plasma levels of endocrine FGFs and fetuin-A were measured. Results: Baseline fetuin-A was higher in PCOS women but FGF19, FGF21, and FGF23 did not differ and were unaffected by exercise. Insulin administration elevated FGF21 in control and PCOS, suppressed FGF19 in controls, and had no effects on FGF23 and fetuin-A. Intralipid infusion suppressed FGF19 and increased FGF21. Insulin with intralipid synergistically increased FGF21 and did not have effects on lipid-mediated suppression of FGF19 in both groups. Conclusion: Our study provides evidence for insulin and lipid regulation of endocrine FGFs in healthy and PCOS women, suggesting that FGF family members play a role in lipid and glucose metabolism. Clinical Trial Registration: www.isrctn.org, Identifier: ISRCTN42448814

    Knowledge and Perception of Diabetes and Available Services among Diabetic Patients in the State of Qatar

    Get PDF
    Introduction: Diabetes is a major public health concern in Qatar. This study examined diabetes knowledge and perception of available services for diabetes control among diabetic patients in Qatar. Methods: Data from 300 diabetic patients were collected through face-to-face interviews using a semi-structured questionnaire between February and May 2015 at Hamad Medical Corporation healthcare facilities in Qatar. Survey responses were represented as frequencies, and Chi-square tests were used to compare proportions across gender. A p-value of 0.05 was considered statistically significant. Results: 31% of patients had Type 1 Diabetes (T1D) (females 36.6%, males 26.5%) and 54% had Type 2 Diabetes (T2D) (males 56.6%, females 50%). Knowledge about diabetes types did not differ by sex (P=0.16). 32.3% of patients were treated for diabetes-related complications including: high cholesterol (39.2%), vision problems (33.1%), hypertension (30.0%), and foot problems (25.1 %). Most patients were diagnosed at primary care clinics (41.7%). During visits, 78.3% of patients reported that they were fully advised about different diabetes tests. 57.0% of patients had ≥4 visits for diabetes checkups in the past 12 months. 66.7% of patients reported that they were confident or very confident in managing their diabetes as a result of their healthcare visits in the past year. The majority of patients reported receiving diabetes-related guidance from physicians (89.7%). Conclusions: Study participants had variable knowledge of diabetes, its complications and risk factors, and services available to diabetics. More comprehensive education and awareness about diabetes is recommended for both patients and family members. At the provider level, further improvement in patient counseling and promotion of available services can be beneficial

    Lipids and insulin regulate mitochondrial-derived peptide (MOTS-c) in PCOS and healthy subjects

    Get PDF
    Objective: Polycystic ovarian syndrome (PCOS) is a heterogeneous endocrine disorder associated with mitochondrial dysfunction and insulin resistance (IR). MOTS-c, a mitochondrial peptide, promotes insulin sensitivity (IS) through activating AKT and AMPK-dependent pathways. The current study was designed to examine the response of MOTS-c to lipids (intralipid) followed by insulin in PCOS and healthy subjects. Methods: All subjects underwent 5-hour intralipid/saline infusion with a hyperinsulinemic-euglycaemic clamp in the final 2 hours. Plasma samples were collected to measure circulating MOTS-c using a commercial ELISA kit. Subsequently, this was repeated following an eight-week exercise intervention. Results: Intralipid significantly increased plasma MOTS-c both in controls and PCOS subjects, whilst the insulin infusion blunted the intralipid-induced response seen for both lipids and MOT-c. Intralipid elevated plasma MOTS-c to 232±124% of basal in control (P < 0.01) and to 349 ± 206% of basal in PCOS (P < 0.001) subjects. Administration of insulin suppressed intralipid-induced MOTS-c from 232 ± 124% to 165 ± 97% (NS) in control and from 349 ± 206% to 183 ± 177% (P < 0.05) in PCOS subjects, respectively. Following exercise, intralipid elevated plasma MOTS-c to 305 ± 153% of basal in control (P < 0.01) and to 215 ± 103% of basal in PCOS (P < 0.01) subjects; insulin suppressed intralipid-induced MOTS-c only in controls.ConclusionsIn conclusion, this is the first study to show increased lipid enhanced circulating MOTS-c whilst insulin attenuated the MOTS-c response in human. Further, eight weeks of moderate exercise training did not show any changes in circulating MOTS-c levels in healthy controls and in women with PCOS

    MicroRNA Changes Up to 24 h following Induced Hypoglycemia in Type 2 Diabetes

    Get PDF
    Hypoglycemia, as a complication of type 2 diabetes (T2D), causes increased morbidity and mortality but the physiological response underlying hypoglycemia has not been fully elucidated. Small noncoding microRNA (miRNA) have multiple downstream biological effects. This pilot exploratory study was undertaken to determine if induced miRNA changes would persist and contribute to effects seen 24 h post-hypoglycemia. A parallel, prospective study design was employed, involving T2D (n = 23) and control (n = 23) subjects. The subjects underwent insulin-induced hypoglycemia (2 mmol/L; 36 mg/dL); blood samples were drawn at baseline, upon the induction of hypoglycemia, and 4 h and 24 h post-hypoglycemia, with a quantitative polymerase chain reaction analysis of miRNA undertaken. The baseline miRNAs did not differ. In the controls, 15 miRNAs were downregulated and one was upregulated (FDR < 0.05) from the induction of hypoglycemia to 4 h later while, in T2D, only four miRNAs were altered (downregulated), and these were common to both cohorts (miR-191-5p; miR-143-3p; let-7b-5p; let-7g-5p), correlated with elevated glucagon levels, and all were associated with energy balance. From the induction of hypoglycemia to 24 h, 14 miRNAs were downregulated and 5 were upregulated (FDR < 0.05) in the controls; 7 miRNAs were downregulated and 7 upregulated (FDR < 0.05) in T2D; a total of 6 miRNAs were common between cohorts, 5 were downregulated (miR-93-5p, let-7b-5p, miR-191-5p, miR-185-5p, and miR-652-3p), and 1 was upregulated (miR-369-3p). An ingenuity pathway analysis indicated that many of the altered miRNAs were associated with metabolic and coagulation pathways; however, of the inflammatory proteins expressed, only miR-143-3p at 24 h correlated positively with tumor necrosis factor-α (TNFa; p < 0.05 and r = 0.46) and negatively with toll-like receptor-4 (TLR4; p < 0.05 and r = 0.43). The MiRNA levels altered by hypoglycemia reflected changes in counter-regulatory glucagon and differed between cohorts, and their expression at 24 h suggests miRNAs may potentiate and prolong the physiological response. Trial registration: ClinicalTrials.gov NCT03102801

    An integrated multi-omic approach demonstrates distinct molecular signatures between human obesity with and without metabolic complications: a case–control study

    Get PDF
    Objectives: To examine the hypothesis that obesity complicated by the metabolic syndrome, compared to uncomplicated obesity, has distinct molecular signatures and metabolic pathways. Methods: We analyzed a cohort of 39 participants with obesity that included 21 with metabolic syndrome, age-matched to 18 without metabolic complications. We measured in whole blood samples 754 human microRNAs (miRNAs), 704 metabolites using unbiased mass spectrometry metabolomics, and 25,682 transcripts, which include both protein coding genes (PCGs) as well as non-coding transcripts. We then identified differentially expressed miRNAs, PCGs, and metabolites and integrated them using databases such as mirDIP (mapping between miRNA-PCG network), Human Metabolome Database (mapping between metabolite-PCG network) and tools like MetaboAnalyst (mapping between metabolite-metabolic pathway network) to determine dysregulated metabolic pathways in obesity with metabolic complications. Results: We identified 8 significantly enriched metabolic pathways comprising 8 metabolites, 25 protein coding genes and 9 microRNAs which are each differentially expressed between the subjects with obesity and those with obesity and metabolic syndrome. By performing unsupervised hierarchical clustering on the enrichment matrix of the 8 metabolic pathways, we could approximately segregate the uncomplicated obesity strata from that of obesity with metabolic syndrome. Conclusions: The data suggest that at least 8 metabolic pathways, along with their various dysregulated elements, identified via our integrative bioinformatics pipeline, can potentially differentiate those with obesity from those with obesity and metabolic complications

    Metabolic profiling of pre-gestational and gestational diabetes mellitus identifies novel predictors of pre-term delivery.

    Get PDF
    Pregnant women with gestational diabetes mellitus (GDM) or type 2 diabetes mellitus (T2DM) are at increased risks of pre-term labor, hypertension and preeclampsia. In this study, metabolic profiling of blood samples collected from GDM, T2DM and control pregnant women was undertaken to identify potential diagnostic biomarkers in GDM/T2DM and compared to pregnancy outcome. Sixty-seven pregnant women (21 controls, 32 GDM, 14 T2DM) in their second trimester underwent targeted metabolomics of plasma samples using tandem mass spectrometry with the Biocrates MxP Quant 500 Kit. Linear regression models were used to identify the metabolic signature of GDM and T2DM, followed by generalized linear model (GLMNET) and Receiver Operating Characteristic (ROC) analysis to determine best predictors of GDM, T2DM and pre-term labor. The gestational age at delivery was 2 weeks earlier in T2DM compared to GDM and controls and correlated negatively with maternal HbA1C and systolic blood pressure and positively with serum albumin. Linear regression models revealed elevated glutamate and branched chain amino acids in GDM + T2DM group compared to controls. Regression models also revealed association of lower levels of triacylglycerols and diacylglycerols containing oleic and linoleic fatty acids with pre-term delivery. A generalized linear model ROC analyses revealed that that glutamate is the best predictors of GDM compared to controls (area under curve; AUC = 0.81). The model also revealed that phosphatidylcholine diacyl C40:2, arachidonic acid, glycochenodeoxycholic acid, and phosphatidylcholine acyl-alkyl C34:3 are the best predictors of GDM + T2DM compared to controls (AUC = 0.90). The model also revealed that the triacylglycerols C17:2/36:4 and C18:1/34:1 are the best predictors of pre-term delivery (≤ 37 weeks) (AUC = 0.84). This study highlights the metabolite alterations in women in their second trimester with diabetes mellitus and identifies predictive indicators of pre-term delivery. Future studies to confirm these associations in other cohorts and investigate their functional relevance and potential utilization for targeted therapies are warranted.This research was sponsored by QNRF, Grant no. NPRP10-1205-160010 (NAM)

    Characteristic MicroRNAs Linked to Dysregulated Metabolic Pathways in Qatari Adult Subjects With Obesity and Metabolic Syndrome

    Get PDF
    BackgroundObesity-associated dysglycemia is associated with metabolic disorders. MicroRNAs (miRNAs) are known regulators of metabolic homeostasis. We aimed to assess the relationship of circulating miRNAs with clinical features in obese Qatari individuals.MethodsWe analyzed a dataset of 39 age-matched patients that includes 18 subjects with obesity only (OBO) and 21 subjects with obesity and metabolic syndrome (OBM). We measured 754 well-characterized human microRNAs (miRNAs) and identified differentially expressed miRNAs along with their significant associations with clinical markers in these patients.ResultsA total of 64 miRNAs were differentially expressed between metabolically healthy obese (OBO) versus metabolically unhealthy obese (OBM) patients. Thirteen out of 64 miRNAs significantly correlated with at least one clinical trait of the metabolic syndrome. Six out of the thirteen demonstrated significant association with HbA1c levels; miR-331-3p, miR-452-3p, and miR-485-5p were over-expressed, whereas miR-153-3p, miR-182-5p, and miR-433-3p were under-expressed in the OBM patients with elevated HbA1c levels. We also identified, miR-106b-3p, miR-652-3p, and miR-93-5p that showed a significant association with creatinine; miR-130b-5p, miR-363-3p, and miR-636 were significantly associated with cholesterol, whereas miR-130a-3p was significantly associated with LDL. Additionally, miR-652-3p’s differential expression correlated significantly with HDL and creatinine.ConclusionsMicroRNAs associated with metabolic syndrome in obese subjects may have a pathophysiologic role and can serve as markers for obese individuals predisposed to various metabolic diseases like diabetes

    MiRNA and associated inflammatory changes from baseline to hypoglycemia in type 2 diabetes

    Get PDF
    Objective: Hypoglycemia in type 2 diabetes (T2D) increases morbidity and mortality but the underlying physiological response is still not fully understood, though physiological changes are still apparent 24 hours after the event. Small noncoding microRNA (miRNA) have multiple downstream biological effects that may respond rapidly to stress. We hypothesized that hypoglycemia would induce rapid miRNA changes; therefore, this pilot exploratory study was undertaken.Methods: A pilot prospective, parallel study in T2D (n=23) and controls (n=23). Insulin-induced hypoglycemia (2mmol/l: 36mg/dl) was induced and blood sampling performed at baseline and hypoglycemia. Initial profiling of miRNA was undertaken on pooled samples identified 96 miRNA that were differentially regulated, followed by validation on a custom designed 112 miRNA panel.Results: Nine miRNAs differed from baseline to hypoglycemia in control subjects; eight were upregulated: miR-1303, miR-let-7e-5p, miR-1267, miR-30a-5p, miR-571, miR-661, miR-770-5p, miR-892b and one was downregulated: miR-652-3p. None of the miRNAs differed from baseline in T2D subjects.Conclusion: A rapid miRNA response reflecting protective pathways was seen in control subjects that appeared to be lost in T2D, suggesting that mitigating responses to hypoglycemia with blunting of the counter-regulatory response in T2D occurs even in patients with short duration of disease
    corecore