146 research outputs found

    Correlated detection of neutral and charged fragments in collision induced fragmentation of molecular clusters

    No full text
    accepté dans International Journal of Mass SpectrometryWe report on collision induced fragmentation of isolated molecular nanosystems studied with an event by event detection technique including the correlated detection of both neutral and charged fragments. This work focuses on the dissociation induced by collisional excitation without ionisation and electron-capture. Two molecular cluster cations are investigated: the collision of protonated hydrogen clusters at 60keV/amu with helium targets and that of protonated water clusters at 8keV with an argon gas. In addition to the molecular evaporation process the dissociation channel leading to the production of the H3+ or H3O+ molecular cations (loss of all the molecules) is observed with an unexpected abundance. The cross section for the production of these cations is observed to increase with the number of molecules in the cluster. Such an increase cannot be associated with the direct collisional excitation of the cation core of the cluster

    Renormalization of the singular attractive 1/r41/r^4 potential

    Full text link
    We study the radial Schr\"odinger equation for a particle of mass mm in the field of a singular attractive g2/r4g^2/{r^4} potential with particular emphasis on the bound states problem. Using the regularization method of Beane \textit{et al.}, we solve analytically the corresponding ``renormalization group flow" equation. We find in agreement with previous studies that its solution exhibits a limit cycle behavior and has infinitely many branches. We show that a continuous choice for the solution corresponds to a given fixed number of bound states and to low energy phase shifts that vary continuously with energy. We study in detail the connection between this regularization method and a conventional method modifying the short range part of the potential with an infinitely repulsive hard core. We show that both methods yield bound states results in close agreement even though the regularization method of Beane \textit{et al.} does not include explicitly any new scale in the problem. We further illustrate the use of the regularization method in the computation of electron bound states in the field of neutral polarizable molecules without dipole moment. We find the binding energy of s-wave polarization bound electrons in the field of C60_{60} molecules to be 17 meV for a scattering length corresponding to a hard core radius of the size of the molecule radius (∼3.37\sim 3.37 \AA). This result can be further compared with recent two-parameter fits using the Lennard-Jones potential yielding binding energies ranging from 3 to 25 meV.Comment: 8 page

    Charge-Transfer Induced Dissociation in the H+(H2O)3-Ar collisions observed with the COINTOF mass spectrometer

    No full text
    Electron-capture in collisions of singly charged protonated water cluster H+(H2O)3, ions with Ar atoms is studied at the impact energy of 8 keV in the frame of the COrrelated Ion and Neutral fragments Time-Of-Flight, COINTOF, technique. In contrast to methods based only on the detection of the charged fragments, dissociation induced by collisional-excitation and electron-capture induced dissociation can be simultaneously recorded in the present set-up. Time of flight measurement of both neutral and corresponding charged species resulting from the charge-exchange process leads to the direct observation of the dissociation of the neutralized protonated water cluster. Thus, the present COINTOF method provides new valuable insights into the collision processes through the detection of produced neutral fragments. Moreover, it opens new possibilities to measure kinetic energy release also in the dissociation of the produced neutrals, which is our future endeavour in the development of the presented COINTOF set up

    A novel "Correlated Ion and Neutral Time Of Flight" Method: event-by-event detection of neutral and charged fragments in Collision Induced Dissociation (CID) of mass selected ions

    No full text
    accepté dans Rev. Sci. Instrum.A new mass spectrometric MS-MS method based on Time Of Fight measurements performed on an event-by-event detection technique is presented. This "COrrelated Ion and Neutral Time of Flight (COINTOF)" method allows to explore CID fragmentation processes by directly identifying not only all ions and neutral fragments produced but also their arrival time correlations within each single fragmentation event from a dissociating molecular ion. This constitutes a new step in the characterization of molecular ions. The method will be illustrated here for a prototypical case involving Collision Induced Dissociation (CID) of protonated water clusters H+(H2O)n=1-5 upon collisions with argon atoms

    Effective Field Theory Program for Conformal Quantum Anomalies

    Full text link
    The emergence of conformal states is established for any problem involving a domain of scales where the long-range, SO(2,1) conformally invariant interaction is applicable. Whenever a clear-cut separation of ultraviolet and infrared cutoffs is in place, this renormalization mechanism produces binding in the strong-coupling regime. A realization of this phenomenon, in the form of dipole-bound anions, is discussed.Comment: 15 pages. Expanded, with additional calculational details. To be published in Phys. Rev.

    Spin-dependent effective interactions for halo nuclei

    Get PDF
    We discuss the spin-dependence of the effective two-body interactions appropriate for three-body computations. The only reasonable choice seems to be the fine and hyperfine interactions known for atomic electrons interacting with the nucleus. One exception is the nucleon-nucleon interaction imposing a different type of symmetry. We use the two-neutron halo nucleus 11Li as illustration. We demonstrate that models with the wrong spin-dependence are basically without predictive power. The Pauli forbidden core and valence states must be consistently treated.Comment: TeX file, 6 pages, 3 postscript figure

    Positron-molecule interactions: resonant attachment, annihilation, and bound states

    Get PDF
    This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment and annihilation. Annihilation rates measured as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFR) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecules (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom. While the details are as yet unclear, intramolecular vibrational energy redistribution to states that do not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. Downshifts of the VFR from the vibrational mode energies have provided binding energies for thirty species. Their dependence upon molecular parameters and their relationship to positron-atom and positron-molecule binding energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecule (negative ion) cases. The relationship of VFR-mediated annihilation to other phenomena such as Doppler-broadening of the gamma-ray annihilation spectra, annihilation of thermalized positrons in gases, and annihilation-induced fragmentation of molecules is discussed.Comment: 50 pages, 40 figure

    Genomic Phenotyping by Barcode Sequencing Broadly Distinguishes between Alkylating Agents, Oxidizing Agents, and Non-Genotoxic Agents, and Reveals a Role for Aromatic Amino Acids in Cellular Recovery after Quinone Exposure

    Get PDF
    Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.Unilever (Firm)National Cancer Institute (U.S.) (R01-CA055042 (now R01-ES022872))Massachusetts Institute of Technology. Center for Environmental Health Sciences (Grant NIEHS P30-ES002109
    • …
    corecore