33 research outputs found

    Unveiling diagnostic and therapeutic strategies for cervical cancer: biomarker discovery through proteomics approaches and exploring the role of cervical cancer stem cells

    Get PDF
    Cervical cancer (CC) is a major global health problem and leading cause of cancer deaths among women worldwide. Early detection through screening programs has reduced mortality; however, screening compliance remains low. Identifying non-invasive biomarkers through proteomics for diagnosis and monitoring response to treatment could improve patient outcomes. Here we review recent proteomics studies which have uncovered biomarkers and potential drug targets for CC. Additionally, we explore into the role of cervical cancer stem cells and their potential implications in driving CC progression and therapy resistance. Although challenges remain, proteomics has the potential to revolutionize the field of cervical cancer research and improve patient outcomes

    Monomethyl Auristatin E, a Potent Cytotoxic Payload for Development of Antibody-Drug Conjugates against Breast Cancer

    Get PDF
    Background: Breast cancer is a heterogeneous disease characterized by differential responses to targeted and chemotherapeutic agents. Antibody-drug conjugates are one of the promising strategies for the treatment of breast cancer. Monomethyl auristatin E (MMAE) is a highly potent microtubule inhibitor and a common payload used for development of antibody-drug conjugates. The purpose of this study was to investigate the cytotoxic effects of MMAE on breast cancer cell lines.Materials and Methods: MDA-MB-468 and MDA-MB-453 cells were treated with MMAE at various concentrations (1, 10, 100, and 1000 ng/ml), and cytotoxicity was measured after 48 and 72 hours using an MTT assay.Results: Our findings indicated that MMAE possesses dose- and time-dependent cytotoxic activities against human breast cancer cells. The morphological features of the treated cells were supportive of the cytotoxic activity of MMAE. The results of the MTT assay showed that MMAE has a significant cytotoxicity against MDA-MB-468 and, to a lesser degree, MDA-MB-453 cells.Conclusion: MMAE can be used as a highly cytotoxic payload for development of antibody-drug conjugates against breast cancer

    Monomethyl auristatin E Exhibits Potent Cytotoxic Activity against Human Cancer Cell Lines SKBR3 and HEK293

    Get PDF
    Background: Monomethyl auristatin E (MMAE) is a synthetic analog of dolastatin 10, a compound originally isolated from the marine mollusk. MMAE, as a highly potent microtubule inhibitor, exerts its potent cytotoxic effect by inhibiting microtubule assembly, tubulin-dependent GTP hydrolysis and microtubes polymerization. This molecule, by itself, lacks the tumor specificity required to elicit therapeutic benefit. Nevertheless, the extremely cytotoxic potential of MMAE could be harnessed in the form of MMAE-antibody conjugates. The aim of the present study was to evaluate the cytotoxic activity of MMAE against breast (SKBR3) and kidney (HEK293) cancer cell lines in an in vitro cell-based assay.Materials and Methods: SKBR3 and HEK293 cells were treated with different concentrations ranging from 0.002048, 0.01024, 0.0512, 0.256, 1.28, 6.4, 32, 160, 800 and 4000 nM of MMAE, and cell viability was determined after 72 hours using an MTT colorimetric assay. The effect of MMAE was regularly monitored by direct observation using an invert microscope.Results: Microscopic observation showed that there was a concentration-dependent increase in cell death. Results from the MTT assay revealed a statistically significant loss of viability (P<0.0001) at concentrations ranging from 0.01024 to 4000 nM in SKBR3 cells, and 0.0512 to 4000 nM in HEK293 cells. Our findings showed that MMAE inhibited the growth of SKBR3 and HEK293 cells in a concentration-dependent manner, with IC50 values of 3.27 ± 0.42 and 4.24 ± 0.37 nM, respectively.Conclusion: MMAE was able to significantly inhibit cell growth at nanomolar concentrations, emphasizing its great potential for the development of antibody-drug conjugates

    An overview of the innate and adaptive immune system in atherosclerosis

    Get PDF
    Cardiovascular disease is the leading cause of death globally. Coronary artery disease (CAD) is a chronic inflammatory disease usually caused by atherosclerosis, in which the coronary arteries become narrowed by atheromatous plaque. Plaques in atherosclerosis are formed through the accumulation of lipids and various immune cells. Both adaptive and innate immune systems are involved in the pathogenesis of atherosclerosis and facilitate plaque formation and disease progression. Almost all immune system cells, including neutrophils, B cells, T cells monocytes, macrophages, foam cells, and dendritic cells (DCs), play a vital role in atherosclerotic plaque. Atherogenesis, the normal function of the endothelium, is initially disrupted and, then, cells of the immune system are recruited to the endothelium following increased expression of cell adhesion molecules. Accumulation of immune cells and lipids leads to the formation of a necrotic nucleus. As the disease progresses, smooth muscle cells form fibrous layers, whose rupture results in exposing the necrotic nucleus and thrombosis. Accordingly, the present review was conducted to determine the role of different cells in innate and adaptive immune systems in inhibition and progression of atherosclerosis

    Investigating the sequential patterns of methamphetamine use initiation in Iran

    Get PDF
    BACKGROUND: Methamphetamine (MA) remains one of the most commonly used amphetamine-type stimulants, accounting for the second most widely-used substance after marijuana. Due to increased use of MA, a wide variety of research has focused on the patterns of MA use initiation among adolescents. Nevertheless, there are few data available for people who use MA. The present study set out to assess the sequential patterns of substance use initiation in patients with MA use disorders in Iran. MATERIALS AND METHODS: This cross-sectional study described substance initiation patterns for 302 patients who used MA admitted to hospitals and psychiatric centers of Shiraz University of Medical Sciences. The study was conducted between April 2015 and June 2016. After obtaining informed consents, participants were interviewed by trained interviewers using face-to-face, semi-structured interviews. The collecting data were analyzed using the chi square tests and one-way analysis of variance (ANOVA) tests to compare the relationship between qualitative and quantitative variables, respectively. RESULTS: Out of 302 participants enrolled in the study, 16 (5.3%) and 286 (94.7%) were female and male, respectively. The mean age of participants in the study was 37.29 years. The mean age of onset of MA use was found to be 15.9 years. 46.1% of the patients started MA use before 15 years. 77.2% of the patients who used MA had family members with a history of substance use. 93.71% of the patients who used MA started substance use with tobacco, alcohol, or opium, as the most frequent substances. Tobacco, as the first substance or starting substance, exhibited the most widely-used substance (69.53% of the cases). Tobacco-alcohol-cannabis-opium-heroin-MA sequencing was significantly related to the early onset of the substance use. Early-onset substance use was significantly higher in those with lower income, primary education, and family history of substance use. No significant relationship was found between employment status with the age of onset of substance use, and different substance use with marital status. CONCLUSION: Tobacco, alcohol and opium can be considered as the main sequencing substances for initiation to MA use. Standardized measures to decrease and control access to main starting and sequencing substances, including tobacco, alcohol, and opium, can greatly help decrease the early onset of the MA use, develop suitable prevention, and establish early intervention strategies

    Association of Y chromosome AZF region microdeletions with recurrent miscarriage in Iranian couples: A case–control study

    No full text
    Abstract Background Recent studies have linked recurrent pregnancy loss (RPL) to abnormalities in the sperm genome, specifically microdeletions in the azoospermia factor (AZF) region. This study investigated the potential association between Y chromosome microdeletions in the AZF region and RPL in Iranian couples. Methods The research presents a case–control study of 240 men: 120 whose partners experienced recurrent miscarriage, and 120 who had successful pregnancies without history of miscarriage. The study used semen parameters, hormone analyses, and microdeletion analysis via multiplex PCR and the YChromStrip kit. Thus, the sequence‐tagged site (STS) markers of AZFa (sY84, sY86), AZFb (sY127, sY134), and AZFc (sY254, sY255) regions were examined. Results The variations in semen parameters and sex hormone levels between cases and controls are suggest impaired testicular function in men whose partners had recurrent miscarriages (p < 0.05). Furthermore, the study revealed a negative correlation between sperm count and follicle‐stimulating hormone (FSH) level, and a positive one between sperm motility and testosterone concentration. There were no microdeletions in the control group, while the RPL group showed 20 deletions in AZFb (sY134) (16.66%) and 10 deletions each in AZFb (sY127) (8.33%) and AZFc (sY254) (8.33%). Conclusion Microdeletions in sY134 (AZFb) were significantly associated with RPL in Iranian men (p = 0.03). AZF microdeletion screening in couples with RPL can provide valuable information for ethnical genetic counseling and management of recurrent miscarriage. Further studies on larger populations or across various ethnic groups, conclusions and the inclusion of other factors like epigenetic changes explain the role of AZF microdeletions in RPL

    CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy

    Get PDF
    In the last 2 decades, a wide variety of studies have been conducted on epigenetics and its role in various cancers. A major mechanism of epigenetic regulation is DNA methylation, including aberrant DNA methylation variations such as hypermethylation and hypomethylation in the promoters of critical genes, which are commonly detected in tumors and mark the early stages of cancer development. Therefore, epigenetic therapy has been of special importance in the last decade for cancer treatment. In epigenetic therapy, all efforts are made to modulate gene expression to the normal status. Importantly, recent studies have shown that epigenetic therapy is focusing on the new gene editing technology, CRISPR-Cas9. This tool was found to be able to effectively modulate gene expression and alter almost any sequence in the genome of cells, resulting in events such as a change in acetylation, methylation, or histone modifications. Of note, the CRISPR-Cas9 system can be used for the treatment of cancers caused by epigenetic alterations. The CRISPR-Cas9 system has greater advantages than other available methods, including potent activity, easy design and high velocity as well as the ability to target any DNA or RNA site. In this review, we described epigenetic modulators, which can be used in the CRISPR-Cas9 system, as well as their functions in gene expression alterations that lead to cancer initiation and progression. In addition, we surveyed various species of CRISPR-dead Cas9 (dCas9) systems, a mutant version of Cas9 with no endonuclease activity. Such systems are applicable in epigenetic therapy for gene expression modulation through chemical group editing on nucleosomes and chromatin remodeling, which finally return the cell to the normal status and prevent cancer progression

    A new and simple non-chromatographic method for isolation of drug/linker constructs: vc-MMAE evaluation

    Get PDF
    Introduction: Auristatin and its derivatives (synthetic analogues of dolastatin 10, an antineoplastic natural product), are highly potent antimitotic agents which have attracted considerable attention because of their cytotoxic activity when targeting tumor cells in the form of antibody-drug conjugates (ADCs). Some sophisticated and expensive equipment such as HPLC are needed for drug/linker isolation. The aim of this study was to provide a simple aqueous work-up procedure for the isolation of such drug/linker constructs. The anti-tumor activity of the extracted drug/linker was also investigated against SKBR3 and HEK293 cancer cell lines, and cell viability was assessed. Methods: In the present study, monomethyl auristatin E (MMAE), a derivative of the cytotoxic tubulin modifier auristatin E, was covalently coupled to maleimidocaproyl-valine-citrulline-p-aminobenzoyloxycarbonyl (MC-vc-PAB), a cathepsin-B-cleavable linker, to obtain MC-vc-PAB-MMAE (vc-MMAE). Afterwards, a non-chromatographic isolation procedure was developed to isolate the drug/linker (vc-MMAE) construct. Silica gel thin-layer chromatography and electrospray ionization mass spectrometry were used to monitor the isolation procedure and to confirm the coupling of the linker to the drug, respectively. Further, the anti-tumor activity of the extracted drug/linker was investigated against SKBR3 and HEK293 cancer cell lines, and cell viability was assessed. Results: After coupling, the isolation process was confirmed as a single spot on the TLC plate. The isolation yield was calculated to be 65%. [M + H]+, [M + 2Na]+ and [M + ACN + 2H]+ species were observed in the mass spectra, showing that the coupling of MMAE to the linker is not adversely affected by the workup method. Our data revealed that the isolated vc-MMAE was highly potent against tumor cell lines, exhibiting that the workup procedure did not affect MMAE-mediated cytotoxicity. Conclusion: The isolation method described in this study can be applied for the development of a wide variety of ADCs

    Strengthening the CAR-T cell therapeutic application using CRISPR/Cas9 technology

    No full text
    Adoptive cell immunotherapy with chimeric antigen receptor T (CAR-T) cell has brought a revolutionary means of treatment for aggressive diseases such as hematologic malignancies and solid tumors. Over the last decade, the United States Food and Drug Administration (FDA) approved five types of CAR-T cell therapies for hematologic malignancies, including Idecabtagene vicleucel (Abecma), Lisocabtagene maraleucel (Breyanzi), Brexucabtagene autoleucel (Tecartus), Tisagenlecleucel (Kymriah), and Axicabtagene ciloleucel (Yescarta). Despite outstanding results gained from different clinical trials, CAR-T cell therapy is not free from side effects and toxicities, and needs careful investigations and improvements. Gene-editing technology, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, has emerged as a promising tool to address some of the CAR-T therapy hurdles. Using CRISPR/Cas9 technology, CAR expression as well as other cellular pathways can be modified in various ways to enhance CAR-T cells antitumor function and persistence in immunosuppressive tumor microenvironment. CRISPR/Cas9 technology can also be used to decrease CAR-T cell toxicities and side effects. Hereby, we discussed the practical challenges and hurdles related to the accuracy, efficiency, efficacy, safety, and delivery of CRISPR/Cas9 technology to the genetically engineered-T cells. Combining of these two state-of-the-art technologies, CRISPR/Cas9 and CAR-T cells, the field of oncology has an extraordinary opportunity to enter a new era of immunotherapy, which offers novel therapeutic options for different types of tumors
    corecore