50 research outputs found

    Difference Covering Arrays and Pseudo-Orthogonal Latin Squares

    Get PDF
    Difference arrays are used in applications such as software testing, authentication codes and data compression. Pseudo-orthogonal Latin squares are used in experimental designs. A special class of pseudo-orthogonal Latin squares are the mutually nearly orthogonal Latin squares (MNOLS) first discussed in 2002, with general constructions given in 2007. In this paper we develop row complete MNOLS from difference covering arrays. We will use this connection to settle the spectrum question for sets of 3 mutually pseudo-orthogonal Latin squares of even order, for all but the order 146

    Trees whose 2-domination subdivision number is 2

    Get PDF
    A set SS of vertices in a graph G=(V,E)G = (V,E) is a 22-dominating set if every vertex of V∖SV\setminus S is adjacent to at least two vertices of SS. The 22-domination number of a graph GG, denoted by γ2(G)\gamma_2(G), is the minimum size of a 22-dominating set of GG. The 22-domination subdivision number sdγ2(G)sd_{\gamma_2}(G) is the minimum number of edges that must be subdivided (each edge in GG can be subdivided at most once) in order to increase the 22-domination number. The authors have recently proved that for any tree TT of order at least 33, 1≤sdγ2(T)≤21 \leq sd_{\gamma_2}(T)\leq 2. In this paper we provide a constructive characterization of the trees whose 22-domination subdivision number is 22

    Bounds on several versions of restrained domination number

    Get PDF
    We investigate several versions of restraineddomination numbers and present new bounds on these parameters. We generalize theconcept of restrained domination and improve some well-known bounds in the literature.In particular, for a graph GG of order nn and minimum degree δ≥3\delta\geq 3, we prove thatthe restrained double domination number of GG is at most n−δ+1n-\delta+1. In addition,for a connected cubic graph GG of order nn we show thatthe total restrained domination number of GG is at least n/3n/3 andthe restrained double domination number of GG is at least n/2n/2
    corecore