TREES
WHOSE 2-DOMINATION SUBDIVISION NUMBER IS 2

M. Atapour, S.M. Sheikholeslami, and Abdollah Khodkar

Abstract

A set S of vertices in a graph $G=(V, E)$ is a 2-dominating set if every vertex of $V \backslash S$ is adjacent to at least two vertices of S. The 2-domination number of a graph G, denoted by $\gamma_{2}(G)$, is the minimum size of a 2 -dominating set of G. The 2 -domination subdivision number $\operatorname{sd}_{\gamma_{2}}(G)$ is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the 2 -domination number. The authors have recently proved that for any tree T of order at least $3,1 \leq \operatorname{sd}_{\gamma_{2}}(T) \leq 2$. In this paper we provide a constructive characterization of the trees whose 2-domination subdivision number is 2 .

Keywords: 2-dominating set, 2-domination number, 2-domination subdivision number.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

In this paper, G is a simple graph with vertex set $V(G)$ and edge set $E(G)$ (briefly V and E). For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V(G) \mid$ $u v \in E(G)\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. Similarly, the open neighborhood of a set $S \subseteq V$ is the set $N(S)=\cup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N[S]=N(S) \cup S$. A leaf of a graph G is a vertex of degree 1, while a support vertex of G is a vertex adjacent to a leaf. A support vertex is strong if it is adjacent to at least two leaves. For a vertex v in a rooted tree T, let $D(v)$ denote the set of descendants of v and $D[v]=D(v) \cup\{v\}$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}.

A 2-dominating set of a graph $G=(V, E)$ is a subset S of vertices where each vertex in $V \backslash S$ is adjacent to at least two vertices of S. The 2-domination number of a graph G, denoted by $\gamma_{2}(G)$, is the minimum size of a 2 -dominating set of G. A $\gamma_{2}(G)$-set is a 2 -dominating set of G with size $\gamma_{2}(G)$. The 2 -domination numbers have been studied by several authors (see for example $[6,7,13,15])$.

The 2-domination subdivision number $\operatorname{sd}_{\gamma_{2}}(G)$ of a graph G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the 2 -domination number of G. It is easy to see that [4] the 2-domination number of a graph cannot decrease when an edge of that graph is subdivided. For a more thorough treatment of domination parameters and for terminology not presented here see $[12,16]$.

Atapour et al. [4] showed the following result.
Theorem 1.1. For any tree T of order $n \geq 3,1 \leq \operatorname{sd}_{\gamma_{2}}(T) \leq 2$.
Hence, trees can be classified as Class 1 or Class 2 depending on whether their 2-domination subdivision numbers are 1 or 2 , respectively. In this paper we give a constructive characterization of trees in Class 2. For recent results on the topic "constructive characterization of graphs" the reader may consult [1-3, 9, 11, 14].

We make use of the following observations in this paper.
Theorem 1.2 ([7]). Every 2-dominating set of a graph G contains every leaf.
Observation 1.3 ([7]). Let T be a tree obtained from a nontrivial tree T^{\prime} by adding a star $K_{1, p}$ with the center vertex v attached by an edge vw at a vertex w of T^{\prime}. Then $\gamma_{2}\left(T^{\prime}\right)+p \leq \gamma_{2}(T)$, with equality if $p \geq 2$ or w is a leaf in T^{\prime}.

2. TREES WHOSE 2-DOMINATION SUBDIVISION NUMBER IS 2

In this section we provide a constructive characterization of all trees in Class 2. For this purpose, we describe a procedure to build a family \mathcal{F} of labeled trees that are in Class 2 as follows. The label of a vertex is also called its status and denoted sta(v). A labeled P_{4} is a P_{4} where the two leaves have status A and the other two vertices have status B and status C, respectively. Let \mathcal{F} be the family of labeled trees that: A labeled P_{4} is a tree in \mathcal{F} and if T is a tree in \mathcal{F}, then the tree T^{\prime} obtained from T by the following five operations which extend the tree T by attaching a tree to a vertex $y \in V(T)$, called an attacher, is also a tree in \mathcal{F}.
Operation \mathfrak{T}_{1}. If $\operatorname{sta}(y)=B$ (respectively, C) and y is a support vertex, then \mathfrak{T}_{1} adds a vertex x and an edge $x y$ to T with $\operatorname{sta}(x)=A$. Moreover, if $\operatorname{deg}(y)=2$ and y is adjacent to a vertex z of status C (respectively, B), then this operation changes the status of z to C^{\prime} (respectively, B^{\prime}).
Operation \mathfrak{T}_{2}. If $\operatorname{sta}(y)=B$ (respectively, C) and y is adjacent to a support vertex z with $\operatorname{deg}(z)=2$ and $\operatorname{sta}(z)=C$ (respectively, B), then \mathfrak{T}_{2} adds a vertex x and an edge $x y$ to T with $\operatorname{sta}(x)=A$. Moreover, this operation changes the status of z to C^{\prime} (respectively, B^{\prime}).
Operation \mathfrak{T}_{3}. If $\operatorname{sta}(y)=A, A^{\prime}, B^{\prime}$ or C^{\prime}, then \mathfrak{T}_{3} adds a star $K_{1,2}$ with center x and two leaves x_{1}, x_{2} and an edge $x y$ to T with $\operatorname{sta}(x)=F$ and $\operatorname{sta}\left(x_{1}\right)=\operatorname{sta}\left(x_{2}\right)=A$. Moreover, this operation changes the status of y from A to A^{\prime}.
Operation \mathfrak{T}_{4}. If $\operatorname{sta}(y)=A$, then we have three cases:
Case 1. y is adjacent to a vertex z of status B or B^{\prime}. Then \mathfrak{T}_{4} adds a path $y x u$ to T with $\operatorname{sta}(x)=B, \operatorname{sta}(u)=A$ and changes the status of y from A to C.

Case 2. y is adjacent to a vertex z of status C or C^{\prime}. Then \mathfrak{T}_{4} adds a path $y x u$ to T with $\operatorname{sta}(x)=C, \operatorname{sta}(u)=A$ and changes the status of y from A to B.
Case 3. y is adjacent to a vertex z of status F. Then \mathfrak{T}_{4} adds a path $y x u$ to T with $\operatorname{sta}(x)=C, \operatorname{sta}(u)=A$ and changes the status of y from A to B.
Operation \mathfrak{T}_{5}. If $\operatorname{sta}(y)=F$, then \mathfrak{T}_{5} adds a vertex x and an edge $x y$ to the tree T with $\operatorname{sta}(x)=A$.

The five operations are shown in Figure 1. Note that operation 3 adds two leaves and all the other operations add one leaf to tree T.

or $\quad \mathfrak{T}_{2}: \quad \stackrel{A}{\bullet \rightarrow} \underset{\text { if } \operatorname{deg}(z)=2}{z} B^{\prime}, \begin{gathered}C \\ y \\ x\end{gathered}$

or $\quad \mathfrak{T}_{3}$:

or $\quad \mathfrak{T}_{4}$:

$\mathfrak{T}_{5}:$

Fig. 1. The five operations

The family \mathcal{F}

If $T \in \mathcal{F}$, we let $A(T), B(T), C(T), F(T), A^{\prime}(T), B^{\prime}(T)$ and $C^{\prime}(T)$ be the set of vertices of status $A, B, C, F, A^{\prime}, B^{\prime}$, and C^{\prime}, respectively, in T. The following observation comes from the way in which each tree in the family \mathcal{F} is constructed.
Observation 2.1. Let $T \in \mathcal{F}$ and $v \in V(T)$.

1. The set of vertices with status A is the set of leaves of tree T.
2. If v is a support vertex, then $\operatorname{sta}(v)=B, C, F, B^{\prime}$ or C^{\prime}.
3. If $\operatorname{sta}(v)=B$ or B^{\prime}, then v has at least one neighbor y of status C or C^{\prime} and $N(v)-\{y\} \subset A(T) \cup A^{\prime}(T) \cup C(T) \cup C^{\prime}(T) \cup F(T)$. Thus $A(T) \cup A^{\prime}(T) \cup C(T) \cup$ $C^{\prime}(T) \cup F(T)$ is a 2-dominating set for T.
4. If sta $(v)=C, C^{\prime}$ or F, then v has at least two neighbors of status A, A^{\prime}, B or B^{\prime}. Thus $A(T) \cup A^{\prime}(T) \cup B(T) \cup B^{\prime}(T)$ is a 2-dominating set for T.
We proceed with the following two propositions.
Proposition 2.2.1. Let T^{\prime} be a tree of order at least 3 and let y be a leaf of T^{\prime}. Let T be a tree obtained from T^{\prime} by adding a path yuv to T^{\prime}. Then $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+1$. Moreover, $\operatorname{sd}_{\gamma_{2}}(T) \leq \operatorname{sd}_{\gamma_{2}}\left(T^{\prime}\right)$.
5. Let T^{\prime} be a tree of order at least 3 and let y be a strong support vertex of T^{\prime}. Let T be a tree obtained from T^{\prime} by adding a pendant edge yw. Then $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+1$. Moreover, $\operatorname{sd}_{\gamma_{2}}(T) \leq \operatorname{sd}_{\gamma_{2}}\left(T^{\prime}\right)$.
6. Let T^{\prime} be a tree of order at least 3 and let y be a leaf of T^{\prime}. Let T be a tree obtained from T^{\prime} by adding a path yuv to T^{\prime} and $t(\geq 1)$ pendant edges at y. Then $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+t+1$. Moreover, $\operatorname{sd}_{\gamma_{2}}(T) \leq \operatorname{sd}_{\gamma_{2}}\left(T^{\prime}\right)$.
Proof. (1) By Observation 1.3, $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+1$. Let F be a set of edges in T^{\prime} where subdividing the edges in F increases the 2-domination number of T^{\prime}. Let T_{1} and T_{2} be the trees obtained from T^{\prime} and T, respectively, by subdividing the edges in F. Then y is a leaf in T_{1} and T_{2} is obtained from T_{1} by adding a path $y u v$ to T_{1}. Thus

$$
\gamma_{2}\left(T_{2}\right)=\gamma_{2}\left(T_{1}\right)+1>\gamma_{2}\left(T^{\prime}\right)+1=\gamma_{2}(T)
$$

It follows that, $\operatorname{sd}_{\gamma_{2}}(T) \leq \operatorname{sd}_{\gamma_{2}}\left(T^{\prime}\right)$.
(2) Let u, v be the two leaves of T^{\prime} adjacent to y in T^{\prime}. Then u, v, w are leaves in T. It is easy to see that for every $\gamma_{2}\left(T^{\prime}\right)$-set $S, S \cup\{w\}$ is a 2-dominating set of T. It follows that $\gamma_{2}(T) \leq \gamma_{2}\left(T^{\prime}\right)+1$. Now if S^{\prime} is a $\gamma_{2}(T)$-set, then $\{u, v, w\} \subseteq S^{\prime}$. Hence, $S^{\prime}-\{w\}$ is a 2-dominating set of T^{\prime}. Thus $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+1$.

Let F be a set of edges in T^{\prime} where subdividing the edges in F increases the 2-domination number of T^{\prime}. Let T_{1} and T_{2} be the trees obtained from T^{\prime} and T, respectively, by subdividing the edges in F. Then T_{2} is obtained from T_{1} by adding the pendant edge $y w$. If $F \cap\{y u, y v\}=\emptyset$, then, as before, we have $\gamma_{2}\left(T_{2}\right)=\gamma_{2}\left(T_{1}\right)+1$ and so

$$
\gamma_{2}\left(T_{2}\right)=\gamma_{2}\left(T_{1}\right)+1>\gamma_{2}\left(T^{\prime}\right)+1=\gamma_{2}(T)
$$

Now suppose that $|F \cap\{y u, y v\}| \geq 1$. We may assume the edge $y u$ is subdivided by inserting a vertex x. Obviously, for every $\gamma_{2}\left(T_{1}\right)$-set $S, S \cup\{w\}$ is a 2-dominating set of T and so $\gamma_{2}\left(T_{2}\right) \leq \gamma_{2}\left(T_{1}\right)+1$. Now if D is a $\gamma_{2}\left(T_{2}\right)$-set, then by Theorem $1.2, w \in D$ and to dominate x twice we must have $x \in D$ or $y \in D$. In each case $(D-\{x\}) \cup\{y\}$ is a 2-dominating set for T_{1}. It follows that $\gamma_{2}\left(T_{2}\right)=\gamma_{2}\left(T_{1}\right)+1$. As before, we have

$$
\gamma_{2}\left(T_{2}\right)=\gamma_{2}\left(T_{1}\right)+1>\gamma_{2}\left(T^{\prime}\right)+1=\gamma_{2}(T)
$$

It follows that, $\operatorname{sd}_{\gamma_{2}}(T) \leq \operatorname{sd}_{\gamma_{2}}\left(T^{\prime}\right)$.
(3) The proof is similar to (1) and (2) and therefore omitted.

Proposition 2.3. Let T be a tree obtained from a tree T^{\prime} of order at least 3 by attaching a star $K_{1, t}(t \geq 2)$ with center x and joining x to a vertex y of T^{\prime}. Then $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+t$. Moreover, $\operatorname{sd}_{\gamma_{2}}(T) \leq \operatorname{sd}_{\gamma_{2}}\left(T^{\prime}\right)$.

Proof. By Observation 1.3, $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+t$. An argument similar to that described in Proposition 2.2 (Part 1) shows that $\mathrm{sd}_{\gamma_{2}}(T) \leq \operatorname{sd}_{\gamma_{2}}\left(T^{\prime}\right)$.

Reordering a set of operations with respect to a subset of $\left\{\mathfrak{T}_{i}\right\}_{i=1}^{5}$

Let T be a tree obtained from a labeled P_{4} by successive operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{m}$, where $\mathfrak{T}^{i} \in\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}, \mathfrak{T}_{4}, \mathfrak{T}_{5}\right\}$ for $1 \leq i \leq m$. Let $J \subseteq\{1,2,3,4,5\}$ and $\mathfrak{T}_{j} \in$ $\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}, \mathfrak{T}_{4}, \mathfrak{T}_{5}\right\}$ for $j \in J$. The following algorithm reorders operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{m}$ with respect to $\mathfrak{T}_{j}, j \in J$. It is easy to see that if we apply operations $\mathfrak{T}^{i}, 1 \leq i \leq m$ on a labeled P_{4}, according to the new ordering, we obtain T.

Algorithm

1. Set $k=0$.
2. Add one to k. If $k>m$, stop.
3. If $\mathfrak{T}^{k} \notin\left\{\mathfrak{T}_{j} \mid j \in J\right\}$, go to Step 2. If $\mathfrak{T}^{k}=\mathfrak{T}_{j}$ for some $j \in J$, proceed as follows. Find the smallest $\ell \in\{1,2, \ldots, k-1\}$ such that applying \mathfrak{T}_{j} before \mathfrak{T}^{ℓ} does not lead to a different tree from T. If such an ℓ does not exist, go to Step 2, otherwise apply \mathfrak{T}_{j} before \mathfrak{T}^{ℓ}.

Note that for given successive operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{m}$ there exists a unique reordering with respect to a given subset of $\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}, \mathfrak{T}_{4}, \mathfrak{T}_{5}\right\}$.

Example 2.4. Let T (Figure 2) be obtained by applying the sequence $\mathfrak{T}_{3}, \mathfrak{T}_{5}, \mathfrak{T}_{1}$, $\mathfrak{T}_{4}, \mathfrak{T}_{1}, \mathfrak{T}_{4}, \mathfrak{T}_{3}, \mathfrak{T}_{5}, \mathfrak{T}_{4}$ on the initial path $x_{1} x_{2} x_{3} x_{4}$. We see that \mathfrak{T}_{3} adds the star with center x_{5} and the leaves x_{6} and x_{7} to x_{4} (Figure 3), \mathfrak{T}_{5} adds x_{8} to x_{5} (Figure 4), \mathfrak{T}_{1} adds x_{9} to x_{2}, \mathfrak{T}_{4} adds $x_{10} x_{11}$ to x_{8}, \mathfrak{T}_{1} adds x_{12} to x_{10} (Figure 5), \mathfrak{T}_{4} adds $x_{13} x_{14}$ to x_{11}, \mathfrak{T}_{3} adds the star with center x_{15} and the leaves x_{16} and x_{17} to x_{3} (Figure 6), \mathfrak{T}_{5} adds x_{18} to x_{15} and \mathfrak{T}_{4} adds the path $x_{19} x_{20}$ to x_{17} (Figure 7). Then T is in Figure 2.

In what follows, we step by step show that how one can find the reordering of the operations $\mathfrak{T}_{3}, \mathfrak{T}_{5}, \mathfrak{T}_{1}, \mathfrak{T}_{4}, \mathfrak{T}_{1}, \mathfrak{T}_{4}, \mathfrak{T}_{3}, \mathfrak{T}_{5}, \mathfrak{T}_{4}$ with respect to $\left\{\mathfrak{T}_{1}, \mathfrak{T}_{3}, \mathfrak{T}_{5}\right\}$. The new ordering will be $\mathfrak{T}_{3}, \mathfrak{T}_{5}, \mathfrak{T}_{1}, \mathfrak{T}_{3}, \mathfrak{T}_{5}, \mathfrak{T}_{4}, \mathfrak{T}_{1}, \mathfrak{T}_{4}, \mathfrak{T}_{4}$.

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

In order to show that each tree in the family \mathcal{F} is in Class 2, we first present three lemmas.

Lemma 2.5. Let $T \in \mathcal{F}$ be obtained from a labeled P_{4} by successive operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{m}$, where $\mathfrak{T}^{i} \in\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}, \mathfrak{T}_{4}, \mathfrak{T}_{5}\right\}$ if $m \geq 1$ and $T=P_{4}$ if $m=0$. Then $A(T) \cup A^{\prime}(T) \cup B(T) \cup B^{\prime}(T)$ is a 2-dominating set of T and $\gamma_{2}(T)=m+k+3$, where k is the number of operations of type \mathfrak{T}_{3}.

Proof. By Part (4) of Observation 2.1, the set $A(T) \cup A^{\prime}(T) \cup B(T) \cup B^{\prime}(T)$ is a 2 -dominating set of T. This implies that $\gamma_{2}(T) \leq m+k+3$. The proof of $\gamma_{2}(T)=$ $m+k+3$ is by induction on m. If $m=0$, then clearly the statement is true. Let $m \geq 1$ and that the statement holds for all trees which are obtained from P_{4} by applying $m-1$ operations $\mathfrak{T} \in\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}, \mathfrak{T}_{4}, \mathfrak{T}_{5}\right\}$. Reorder the operations $\left\{\mathfrak{T}^{1}, \mathfrak{T}^{2}, \ldots, \mathfrak{T}^{m}\right\}$ with respect to $\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{5}\right\}$. Let T_{m-1} be the tree obtained from P_{4} by the first $m-1$ operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{m-1}$. If $\mathfrak{T}^{m}=\mathfrak{T}_{3}$, then T has been obtained from T_{m-1} by adding a star $K_{1,2}$ with center x and two leaves x_{1}, x_{2} and an edge $x y$ to T. By the inductive hypothesis, $\gamma_{2}\left(T_{m-1}\right)=(m-1)+(k-1)+3=m+k+1$ and the result follows by Proposition 2.3. If $\mathfrak{T}^{m}=\mathfrak{T}_{5}$, then T has been obtained from T_{m-1} by adding a vertex x and an edge $x y$ to the tree T_{m-1} where $s t a_{T_{m-1}}(y)=F$. Then, by the choice of reordering, y is a strong support vertex in T_{m-1}. By the inductive hypothesis, $\gamma_{2}\left(T_{m-1}\right)=(m-1)+k+3=m+k+2$ and the result follows by Proposition 2.2 (Part 2). If $\mathfrak{T}^{m}=\mathfrak{T}_{4}$, then the result follows by the inductive hypothesis and Proposition 2.2 (Part 1). Now consider the two remaining cases.

Case 1. $\mathfrak{T}^{m}=\mathfrak{T}_{1}$. Then T has been obtained from T_{m-1} by adding a vertex x and an edge $x y$, where y is a support vertex of T_{m-1}. Suppose that w is a leaf adjacent to y and z is a vertex of status B, C, C^{\prime} or B^{\prime} adjacent to y by Observation 2.1, Parts (2) and (3). First assume y is in the original P_{4}. Then, by the choice of reordering, $\mathfrak{T}^{1}=\mathfrak{T}^{2}=\ldots=\mathfrak{T}^{m}=\mathfrak{T}_{1}$ and each operation adds a pendant edge at y. Therefore $\operatorname{deg}(z)=2$. For any $\gamma_{2}\left(T_{m-1}\right)$-set $S^{\prime}, S^{\prime} \cup\{x\}$ is a 2 -dominating set of T and so $\gamma_{2}(T) \leq \gamma_{2}\left(T_{m-1}\right)+1$. On the other hand, if S is a $\gamma_{2}(T)$-set, then clearly $x, w \in S$ and $|S \cap\{y, z\}| \geq 1$ since $\operatorname{deg}(z)=2$. Then $S-\{x\}$ is a 2 -dominating set of T_{m-1}. This implies that $\gamma_{2}\left(T_{m-1}\right) \leq \gamma_{2}(T)-1$ and so $\gamma_{2}\left(T_{m-1}\right)+1=\gamma_{2}(T)$. Now the result follows by the inductive hypothesis.

Now assume y is not in the original P_{4}. By the choice of reordering, we may assume for some positive integer $s, \mathfrak{T}^{m}=\ldots=\mathfrak{T}^{s+1}=\mathfrak{T}_{1}$ and each operation adds a pendant edge at y and $\mathfrak{T}^{s}=\mathfrak{T}_{4}$ which adds the path $z y w$. Therefore, z is a leaf in T_{s-1} and so $\operatorname{sta}_{T_{s-1}}(z)=A$ and $\operatorname{deg}_{T}(z)=2$. By Proposition 2.3, $\gamma_{2}\left(T_{s-1}\right)+(m-s)+1=\gamma_{2}(T)$. Now the result follows by the inductive hypothesis.

Case 2. $\mathfrak{T}^{m}=\mathfrak{T}_{2}$. Then T has been obtained from T_{m-1} by adding a vertex x and an edge $x y$, where y is adjacent to a support vertex z of T_{m-1} with $\operatorname{deg}(z)=2$. For any $\gamma_{2}\left(T_{m-1}\right)$-set $S^{\prime}, S^{\prime} \cup\{x\}$ is a 2-dominating set of T and so $\gamma_{2}(T) \leq \gamma_{2}\left(T_{m-1}\right)+1$. On the other hand, if S is a $\gamma_{2}(T)$-set, then clearly $x, w \in S$ and $|S \cap\{y, z\}| \geq 1$ since $\operatorname{deg}(z)=2$. Then $S-\{x\}$ is a 2 -dominating set of T_{m-1}. This implies that $\gamma_{2}\left(T_{m-1}\right) \leq \gamma_{2}(T)-1$ and so $\gamma_{2}\left(T_{m-1}\right)+1=\gamma_{2}(T)$. Now the result follows by the inductive hypothesis.

Lemma 2.6. Let $T \in \mathcal{F}$ be obtained from a labeled P_{4} by successive operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{m}$, where $\mathfrak{T}^{i} \in\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}, \mathfrak{T}_{4}, \mathfrak{T}_{5}\right\}$ if $m \geq 1$ and $T=P_{4}$ if $m=0$. Then:

1. for every $v \in V(T)$, there exists a $\gamma_{2}(T)$-set containing v,
2. if $v \in A(T)$, then there is a $\gamma_{2}(T)$-set S containing v and its support vertex. Therefore, $S-\{v\}$ is a 2-dominating set of $T-\{v\}$.

Proof. The proof is by induction on m. If $m=0$, then clearly the statements are true. Let $m \geq 1$ and the statements hold for all trees which are obtained from a labeled P_{4} by applying at most $m-1$ operations $\mathfrak{T} \in\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}, \mathfrak{T}_{4}, \mathfrak{T}_{5}\right\}$. Let T_{m-1} be the tree obtained from P_{4} by the first $m-1$ operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{m-1}$. Reorder the operations $\left\{\mathfrak{T}^{1}, \mathfrak{T}^{2}, \ldots, \mathfrak{T}^{m}\right\}$ with respect to $\left\{\mathfrak{T}_{3}\right\}$.
(1) Since by Lemma 2.5, $A(T) \cup A^{\prime}(T) \cup B(T) \cup B^{\prime}(T)$ is a $\gamma_{2}(T)$-set, we assume that $v \in C(T) \cup C^{\prime}(T) \cup F(T)$. We consider three cases.

Case 1. $\mathfrak{T}^{m}=\mathfrak{T}_{1}, \mathfrak{T}_{2}$ or \mathfrak{T}_{5}. Then T is obtained from T_{m-1} by adding a vertex x and an edge $x y$, where $y \in B\left(T_{m-1}\right) \cup C\left(T_{m-1}\right) \cup F\left(T_{m-1}\right)$. Since $C(T) \cup C^{\prime}(T) \cup F(T)=$ $C\left(T_{m-1}\right) \cup C^{\prime}\left(T_{m-1}\right) \cup F\left(T_{m-1}\right)$, by the inductive hypothesis v is contained in some $\gamma_{2}\left(T_{m-1}\right)$-set S. Now $S \cup\{x\}$ is a $\gamma_{2}(T)$-set containing v by Lemma 2.5.

Case 2. $\quad \mathfrak{T}^{m}=\mathfrak{T}_{3}$. Then T is obtained from T_{m-1} by adding a star $K_{1,2}$ with center x and two leaves x_{1}, x_{2} and an edge $x y$, where $y \in A\left(T_{m-1}\right) \cup A^{\prime}\left(T_{m-1}\right) \cup B^{\prime}\left(T_{m-1}\right) \cup$ $C^{\prime}\left(T_{m-1}\right)$. We have $C(T) \cup C^{\prime}(T) \cup F(T)=\left(C\left(T_{m-1}\right) \cup C^{\prime}\left(T_{m-1}\right) \cup F\left(T_{m-1}\right)\right) \cup\{x\}$. If $v \in V\left(T_{m-1}\right)$, then by the inductive hypothesis there is a $\gamma_{2}\left(T_{m-1}\right)$-set S containing v and $S \cup\left\{x_{1}, x_{2}\right\}$ is a $\gamma_{2}(T)$-set by Lemma 2.5. Let $v=x$. By the choice of reordering, for some integer $0 \leq s \leq m-1$, each of $\mathfrak{T}^{m}, \mathfrak{T}^{m-1}, \cdots, \mathfrak{T}^{s+1}$ adds a star $K_{1,2}$ and joins its center to y but \mathfrak{T}^{s} does not add a star $K_{1,2}$ to y. If $s<m-1$, then we may assume \mathfrak{T}^{m-1} adds a star $K_{1,2}$ with center x^{\prime} and leaves $x_{1}^{\prime}, x_{2}^{\prime}$. Obviously, we can rearrange the order of the operations to have $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{m-2}, \mathfrak{T}^{m}, \mathfrak{T}^{m-1}$. By the inductive hypothesis, the tree T^{\prime} obtained from P_{4} by the operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{m-2}$, \mathfrak{T}^{m} has a $\gamma_{2}\left(T^{\prime}\right)$-set S containing v. Then $S \cup\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\}$ is a $\gamma_{2}(T)$-set containing v by Lemma 2.5. Now we assume $s=m-1$. Let first sta $(y)=B^{\prime}$ or C^{\prime}. Then, by the choice of reordering, we may assume $\mathfrak{T}^{s} \in\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}\right\}$. We consider two subcases.

Subcase 2.1. $\quad \mathfrak{T}^{m-1}=\mathfrak{T}_{1}$. This forces that y is adjacent to a strong support vertex z with status B or C and $\operatorname{deg}(z)=3$. By Lemma 2.5 and the inductive hypothesis, z is contained in a $\gamma_{2}\left(T_{m-1}\right)$-set S. Now obviously $(S \backslash\{z\}) \cup\left\{x, x_{1}, x_{2}\right\}$ is a $\gamma_{2}(T)$-set containing v.

Subcase 2.2. $\mathfrak{T}^{m-1}=\mathfrak{T}_{2}$. Then T_{m-1} is obtained from T_{m-2} by adding a vertex u and an edge $u z$, where z is a vertex of status B or C adjacent to the support vertex y of status C or B and degree 2 in T_{m-2}. Thus we have $\operatorname{deg}_{T_{m-1}}(z) \geq 3$, $\operatorname{sta}_{T_{m-1}}(z)=B$ or C and $\operatorname{sta}_{T_{m-1}}(y)=C^{\prime}$ or B^{\prime}. Let z^{\prime} be a vertex adjacent to z other than y and u. By the inductive hypothesis, z^{\prime} is contained in a $\gamma_{2}\left(T_{m-1}\right)$-set say S. Then we have $z \in S$ or $y \in S$. By Lemma 2.5, $(S \backslash\{z, y\}) \cup\left\{x, x_{1}, x_{2}\right\}$ is a $\gamma_{2}(T)$-set containing v.

Now let $\operatorname{sta}(y)=A$. Then y is a leaf in T_{m-1}, and by the inductive hypotheses there is a $\gamma_{2}\left(T_{m-1}\right)$-set S containing y and its support vertex and so $(S \backslash\{y\}) \cup\left\{x, x_{1}, x_{2}\right\}$ is a $\gamma_{2}(T)$-set containing v.

Finally, let $\operatorname{sta}(y)=A^{\prime}$. Then \mathfrak{T}^{m-1} adds a star $K_{1,2}$ with center x^{\prime} and leaves $x_{1}^{\prime}, x_{2}^{\prime}$ and changes the status of y from A to A^{\prime}. Thus y is a leaf in T_{m-2}, and by the inductive hypothesis there is a $\gamma_{2}\left(T_{m-2}\right)$-set S containing y and its support vertex w. Now obviously $(S \backslash\{y\}) \cup\left\{x_{1}^{\prime}, x_{2}^{\prime}, x, x_{1}, x_{2}\right\}$ is a $\gamma_{2}(T)$-set containing v.
Case 3. $\mathfrak{T}^{m}=\mathfrak{T}_{4}$. Then T is obtained from T_{m-1} by adding a path $y x u$ to T_{m-1}, where $y \in A\left(T_{m-1}\right)$. Thus y is a leaf in T_{m-1}. Suppose that z is the support vertex of y in T_{m-1}. If $v \in T_{m-1}$, then by the inductive hypothesis v is contained in some $\gamma_{2}\left(T_{m-2}\right)$-set S and $S \cup\{u\}$ is a $\gamma_{2}(T)$-set by Lemma 2.5. Now let $v=x$. By the inductive hypothesis, there is a $\gamma_{2}\left(T_{m-1}\right)$-set S containing y and its support vertex and obviously $(S-\{y\}) \cup\{x, u\}$ is a $\gamma_{2}(T)$-set containing v.
(2) Let u be the support vertex of v. Then by Part (2) of Observation 2.1, sta $(u)=$ $B, C, B^{\prime}, C^{\prime}$, or F. Now the result follows by Lemma 2.5, Part (1) of this theorem and the fact that each $\gamma_{2}(T)$-set contains all leaves

Lemma 2.7. Let $T \in \mathcal{F}$ and let T^{*} be a tree obtained from T by subdividing an edge of T. Then $\gamma_{2}\left(T^{*}\right)=\gamma_{2}(T)$.
Proof. Let $T \in \mathcal{F}$. First note that $\gamma_{2}\left(T^{*}\right) \geq \gamma_{2}(T)$ and that any 2-dominating set of T^{*} of size $\gamma_{2}(T)$ is a $\gamma_{2}\left(T^{*}\right)$-set. Let $e \in E(T)$ and let T^{*} be obtained from T by subdividing the edge e with vertex u. Let T be obtained from a labeled P_{4} by successive operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{m}$, respectively, where $\mathfrak{T}^{i} \in\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}, \mathfrak{T}_{4}, \mathfrak{T}_{5}\right\}$ for $1 \leq i \leq m$ if $m \geq 1$ and $T=P_{4}$ if $m=0$. The proof is by induction on m. If $m=0$, then clearly the statement is true. Assume $m \geq 1$ and that the statement holds for all trees which are obtained from a labeled P_{4} by applying at most $m-1$ operations. Suppose T_{m-1} is a tree obtained by applying the first $m-1$ operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{m-1}$. When $e \in E\left(T_{m-1}\right)$, let T_{m-1}^{*} be obtained from T_{m-1} by subdividing the edge e with vertex u. We consider three cases.

Case 1. $\mathfrak{T}^{m}=\mathfrak{T}_{1}, \mathfrak{T}_{2}$ or \mathfrak{T}_{5}. Then T is obtained from T_{m-1} by attaching the path $y x$ to $y \in B\left(T_{m-1}\right) \cup C\left(T_{m-1}\right) \cup F\left(T_{m-1}\right)$. If $e \in E\left(T_{m-1}\right)$, then by the inductive hypothesis we have

$$
\gamma_{2}\left(T^{*}\right) \leq \gamma_{2}\left(T_{m-1}^{*}\right)+1=\gamma_{2}\left(T_{m-1}\right)+1=\gamma_{2}(T)
$$

Let $e=x y$. By Lemmas 2.5 and 2.6, there exists a $\gamma_{2}\left(T_{m-1}\right)$-set S containing y. Now $S \cup\{x\}$ is a 2 -dominating set of T^{*} of size $\gamma_{2}\left(T_{m-1}\right)+1=\gamma_{2}(T)$. Hence, $\gamma_{2}\left(T^{*}\right)=\gamma_{2}(T)$.
Case 2. $\quad \mathfrak{T}^{m}=\mathfrak{T}_{3}$. Then T is obtained from T_{m-1} by attaching a star $K_{1,2}$ with center x and two leaves x_{1}, x_{2} to the attacher $y \in A\left(T_{m-1}\right) \cup A^{\prime}\left(T_{m-1}\right) \cup C^{\prime}\left(T_{m-1}\right) \cup B^{\prime}\left(T_{m-1}\right)$. If $e \in E\left(T_{m-1}\right)$, then by Proposition 2.3 and the inductive hypothesis we have

$$
\gamma_{2}\left(T^{*}\right)=\gamma_{2}\left(T_{m-1}^{*}\right)+2=\gamma_{2}\left(T_{m-1}\right)+2=\gamma_{2}(T)
$$

Let $e \in E(T) \backslash E\left(T_{m-1}\right)$. By Lemma 2.6, there is a $\gamma_{2}(T)$-set S containing x. Now S is a 2-dominating set of T^{*} of size $\gamma_{2}(T)$ if $e=x x_{1}$ or $x x_{2}$ and $(S-\{x\}) \cup\{u\}$ is a 2-dominating set for T^{*} of size $\gamma_{2}(T)$ if $e=x y$. Recall that u is the subdividing vertex.

Case 3. $\mathfrak{T}^{m}=\mathfrak{T}_{4}$. Then T is obtained from T_{m-1} by attaching the path $y x w$ to the attacher $y \in A\left(T_{m-1}\right)$. If $e \in E\left(T_{m-1}\right)$, then by Proposition 2.2 and the inductive hypothesis $\gamma_{2}\left(T^{*}\right)=\gamma_{2}\left(T_{m-1}^{*}\right)+1=\gamma_{2}\left(T_{m-1}\right)+1=\gamma_{2}(T)$. Let $e \notin E\left(T_{m-1}\right)$. Without loss of generality, we may subdivide $e=y x$ with u. By Lemma 2.6, T_{m-1} has a $\gamma_{2}\left(T_{m-1}\right)$-set S containing y and its support vertex. Now $(S-\{y\}) \cup\{u, w\}$ is a $\gamma_{2}\left(T^{*}\right)$-set of size $\gamma_{2}(T)$. This completes the proof.

An immediate consequence of Theorem 1.1 and Lemma 2.7 now follows.
Theorem 2.8. Each tree in Family \mathcal{F} is in Class 2.
In order to prove that any tree in Class 2 is indeed in \mathcal{F} we need the following lemma.

Lemma 2.9. Let $T \in \mathcal{F}, v \in B(T) \cup C(T) \cup F(T)$ and let T^{*} be obtained from T by adding a star $K_{1,2}$ and an edge joining the center of the star to v. Then $\operatorname{sd}_{\gamma_{2}}\left(T^{*}\right)=1$.

Proof. Let $T \in \mathcal{F}$ be obtained from a labeled P_{4} by successive operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{m}$, where $\mathfrak{T}^{i} \in\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}, \mathfrak{T}_{4}, \mathfrak{T}_{5}\right\}$ if $m \geq 1$ and $T=P_{4}$ if $m=0$. The proof is by induction on m. If $m=0$, then clearly the statement is true. Assume $m \geq 1$ and that the statement holds for all trees which are obtained from a labeled P_{4} by applying at most $m-1$ operations. Suppose T_{m-1} is the tree obtained by applying the first $m-1$ operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{m-1}$. When $v \in V\left(T_{m-1}\right)$, let T_{m-1}^{*} be obtained from T_{m-1} by adding a star $K_{1,2}$ and an edge joining the center of the star to v. Reorder the operations $\left\{\mathfrak{T}^{1}, \mathfrak{T}^{2}, \ldots, \mathfrak{T}^{m}\right\}$ with respect to $\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{5}\right\}$. Let z, z_{1} and z_{2} be the center and leaves of the added star to T, respectively. We consider five cases.

Case 1. $\mathfrak{T}^{m}=\mathfrak{T}_{3}$. Then T is obtained from T_{m-1} by adding a star $K_{1,2}$ and an edge joining the center x of the star to $y \in A\left(T_{m-1}\right) \cup A^{\prime}\left(T_{m-1}\right) \cup B^{\prime}\left(T_{m-1}\right) \cup$ $C^{\prime}\left(T_{m-1}\right)$. If $v \in V\left(T_{m-1}\right)$, then by the inductive hypothesis $\operatorname{sd}_{\gamma_{2}}\left(T_{m-1}^{*}\right)=1$. Since T^{*} is formed from T_{m-1}^{*} by adding a star $K_{1,2}$, by Proposition 2.3 we have $\operatorname{sd}_{\gamma_{2}}\left(T^{*}\right) \leq$ $\operatorname{sd}_{\gamma_{2}}\left(T_{m-1}^{*}\right)=1$. Thus by Theorem 1.1, $\operatorname{sd}_{\gamma_{2}}\left(T^{*}\right)=1$. If $v=x$, then let T^{\prime} be obtained from T^{*} by subdividing the edge $x z$ by inserting a vertex t. Since y and z are strong support vertices, for each $\gamma_{2}\left(T^{*}\right)$-set S we have $z \notin S$, for otherwise $S-\{z\}$ is a 2 -dominating set for T^{*}, a contradiction. Let D be a $\gamma_{2}\left(T^{\prime}\right)$-set. Then $u \in D$ or $y, z \in D$ and hence $D-\{u\}$ or $D-\{z\}$ is a 2-dominating set for T^{*}. Therefore $\operatorname{sd}_{\gamma_{2}}\left(T^{*}\right) \leq 1$ and the result follows by Theorem 1.1.

Case 2. $\mathfrak{T}^{m}=\mathfrak{T}_{4}$. Then T is obtained from T_{m-1} by adding a path $x w$ and an edge joining x to $y \in A\left(T_{m-1}\right)$. First let $v \in V\left(T_{m-1}\right)-\{y\}$. Then by the inductive hypothesis $\operatorname{sd}_{\gamma_{2}}\left(T_{m-1}^{*}\right)=1$. Assume e is an edge of T_{m-1}^{*} such that subdividing e increases the 2-domination number. Let T_{m-1}^{\prime} and T^{\prime} be obtained from T_{m-1}^{*} and
T^{*} by subdividing the edge e, respectively. By Proposition 2.2 (Part (1)), $\gamma_{2}\left(T^{*}\right)=$ $\gamma_{2}\left(T_{m-1}^{*}\right)+1$ and $\gamma_{2}\left(T^{\prime}\right)=\gamma_{2}\left(T_{m-1}^{\prime}\right)+1$. Now

$$
\gamma_{2}\left(T^{\prime}\right)=\gamma_{2}\left(T_{m-1}^{\prime}\right)+1 \geq \gamma_{2}\left(T_{m-1}^{*}\right)+2=\gamma_{2}\left(T^{*}\right)+1
$$

Therefore, $\operatorname{sd}_{\gamma_{2}}\left(T^{*}\right)=1$ by Theorem 1.1.
Let $v=y$. Obviously, $\operatorname{deg}(x)=2$. Let T^{\prime} be obtained from T^{*} by subdividing the edge $y z$ by inserting a vertex t. Suppose that S is a $\gamma_{2}\left(T^{\prime}\right)$-set. Since $\operatorname{deg}(x)=2$, $y \in S$ or $x \in S$. We may assume $y \in S$, otherwise $(S-\{x\}) \cup\{y\}$ is a $\gamma_{2}\left(T^{\prime}\right)$-set. Since t is a subdividing vertex, $\operatorname{deg}(t)=2$. To dominate t we must have $S \cap\{t, z\} \neq \emptyset$. Now obviously $S-\{t, z\}$ is a 2 -dominating set for T^{*} and so $\operatorname{sd}_{\gamma_{2}}\left(T^{*}\right)=1$ by Theorem 1.1.

Now let $v=x$. Then $\operatorname{deg}_{T^{*}}(y)=2$. Suppose that $w \neq x$ is adjacent to y. Let T^{\prime} be obtained from T^{*} by subdividing the edge $x z$ by inserting a vertex t. Suppose that S is a $\gamma_{2}\left(T^{\prime}\right)$-set. Since $\operatorname{deg}_{T^{\prime}}(y)=2, y \in S$ or $\{x, w\} \subseteq S$. To dominate t we must have $S \cap\{t, z\} \neq \emptyset$. Now obviously $S-\{t, z\}$ is a 2 -dominating set for T^{*} and so $\operatorname{sd}_{\gamma_{2}}\left(T^{*}\right)=1$ by Theorem 1.1.

Case 3. $\mathfrak{T}^{m}=\mathfrak{T}_{5}$. Then T is obtained from T_{m-1} by adding a vertex x and an edge joining x to $y \in F\left(T_{m-1}\right)$. By the choice of reordering, we may assume $\mathfrak{T}^{m}=\ldots=$ $\mathfrak{T}^{k+1}=\mathfrak{T}_{5}$ and $\mathfrak{T}^{k}=\mathfrak{T}_{3}$ which adds a star $K_{1,2}$ with center y. Suppose T_{k-1} is the tree obtained by applying the first $k-1$ operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{k-1}$. If $v \in V\left(T_{k-1}\right)$, then Proposition 3 and an argument similar to that described in Case 2 show that the statement is true. If $v=y$, then let T^{\prime} be obtained from T^{*} by subdividing the edge $v z$ by inserting a vertex t. Since y and z are strong support vertices, for each $\gamma_{2}\left(T^{*}\right)$-set S we have $z \notin S$, for otherwise $S-\{z\}$ is a 2 -dominating set for T^{*}, a contradiction. Let D be a $\gamma_{2}\left(T^{\prime}\right)$-set. Then $u \in D$ or $y, z \in D$ and hence $D-\{u\}$ or $D-\{z\}$ is a 2-dominating set for T^{*}. Therefore $\operatorname{sd}_{\gamma_{2}}\left(T^{*}\right) \leq 1$ and the result follows by Theorem 1.1.
Case 4. $\mathfrak{T}^{m}=\mathfrak{T}_{1}$. Then T is obtained from T_{m-1} by adding a vertex x and an edge joining x to a support vertex $y \in B\left(T_{m-1}\right) \cup C\left(T_{m-1}\right)$. If y belongs to the original P_{4}, then obviously $\mathfrak{T}^{1}=\ldots=\mathfrak{T}^{m}=\mathfrak{T}_{1}$ and each operation adds a pendant edge at y. This forces $v=y$ and as Case 3 , it is easy to see that subdividing the edge $y z$ increases the 2-domination number. Suppose y is not contained in the original P_{4}. By the choice of reordering, we may assume $\mathfrak{T}^{m}=\ldots=\mathfrak{T}^{s+1}=\mathfrak{T}_{1}$ where each operation adds a pendant edge at y and $\mathfrak{T}^{s}=\mathfrak{T}_{4}$ which adds a path $y w$ and an edge joining y to some vertex in T_{s-1}. Suppose T_{s-1} is the tree obtained by applying the first $s-1$ operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{s-1}$. If $v \in V\left(T_{s-1}\right)$, then Proposition 2.3 and an argument similar to that described in Case 2 show that the statement is true. If $v=y$ then, as before, we can see that subdividing the edge $y z$ increases the 2 -domination number.

Case 5. $\mathfrak{T}^{m}=\mathfrak{T}_{2}$. Then T is obtained from T_{m-1} by adding a vertex x and an edge that joins x to a vertex $y \in B\left(T_{m-1}\right) \cup C\left(T_{m-1}\right)$, where y is adjacent to a support vertex z of degree 2 in T_{m-1}. If y belongs to the original P_{4}, then the result follows as Case 4. Suppose y is not contained in the original P_{4}. By the choice of reordering, we may assume $\mathfrak{T}^{m}=\ldots=\mathfrak{T}^{s+1}=\mathfrak{T}_{2}$ where each operation adds a pendant edge at y and $\mathfrak{T}^{s}=\mathfrak{T}_{4}$ which adds the path $z w$ and an edge joining z to y in T_{s-1}.

Suppose T_{s-1} is the tree obtained by applying the first $s-1$ operations $\mathfrak{T}^{1}, \ldots, \mathfrak{T}^{s-1}$. If $v \in V\left(T_{s-1}\right)$, then the result follows by Proposition 2.2 (Part (3)) and the inductive hypothesis. Let $v=y$. We show that subdividing the edge $z z_{1}$, where z_{1} is a leaf at z, increases the 2-domination number. Let T^{\prime} be obtained from T^{*} by subdividing the edge $z z_{1}$ by inserting a vertex u. Let S be a $\gamma_{2}(T)$-set. Since $\operatorname{deg}_{T}(z)=2$, we may assume $y \in S$. Now to dominate u we must have $u \in S$ or $z \in S$. Then clearly $S-\{u, z\}$ is a 2 -dominating set for T^{*}. It follows that $\operatorname{sd}_{\gamma_{2}}(T)=1$. This completes the proof.

Theorem 2.10. A tree T of order $n \geq 3$ is in Class 2 if and only if $T \in \mathcal{F}$.
Proof. By Theorem 2.8, we only need to prove that every tree in Class 2 is in \mathcal{F}. We prove this by induction on n. Since $\operatorname{sd}_{\gamma_{2}}(T)=2$, we have $n \geq 4$. If $n=4$, then the only tree T of order 4 and $\operatorname{sd}_{\gamma_{2}}(T)=2$ is $P_{4} \in \mathcal{F}$. Let $n \geq 5$ and assume the statement holds for every tree in Class 2 of order less than n. Let T be a tree of order n and $\operatorname{sd}_{\gamma_{2}}(T)=2$. Assume $P=v_{1} v_{2} \ldots v_{r}$ is the longest path in T. Obviously, $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{r}\right)=1$ and $r \geq 4$. Suppose T is rooted at v_{r}.

First let $\operatorname{deg}\left(v_{2}\right) \geq 3$. Then v_{2} is a strong support vertex. Let $v_{1}=u_{1}, u_{2}, \ldots$, $u_{\operatorname{deg}\left(v_{2}\right)-1}$ be the leaves adjacent to v_{2} and $T_{1}=T-T_{v_{2}}$. By Proposition 2.3, $\operatorname{sd}_{\gamma_{2}}\left(T_{1}\right)=2$ and by the inductive hypothesis, $T_{1} \in \mathcal{F}$. Since $\operatorname{sd}_{\gamma_{2}}(T)=2$, by Lemma 2.9, sta $a_{T_{1}}\left(v_{3}\right)=A, A^{\prime}, B^{\prime}$, or C^{\prime}, and hence T can be obtained from T_{1} by applying operation \mathfrak{T}_{3} once and operation $\mathfrak{T}_{5}, \operatorname{deg}\left(v_{2}\right)-3$ times.

Now let $\operatorname{deg}\left(v_{2}\right)=2$. First let $\operatorname{deg}\left(v_{3}\right)=2$. Then by Proposition 2.2 (Part (1)), $\gamma_{2}(T)=\gamma_{2}\left(T-T_{v_{2}}\right)+1$ and $\operatorname{sd}_{\gamma_{2}}(T) \leq \operatorname{sd}_{\gamma_{2}}\left(T-T_{v_{2}}\right)$. Therefore $\operatorname{sd}_{\gamma_{2}}\left(T-T_{v_{2}}\right)=2$ and by the inductive hypothesis, $T-T_{v_{2}} \in \mathcal{F}$. Now T can be obtained from $T-T_{v_{2}}$ by operation \mathfrak{T}_{4}. Now let $\operatorname{deg}\left(v_{3}\right) \geq 3$. First assume that v_{3} is adjacent to a support vertex u such that $u \neq v_{2}$. Let w be a leaf adjacent to u. As before, we may assume that $\operatorname{deg}(u)=2$. Let T^{\prime} be obtained from T by subdividing the edge $v_{3} u$ by inserting a vertex s. For any $\gamma_{2}(T)$-set S of $T,\left|S \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right| \geq 2$ and $|S \cap\{s, u, w\}| \geq 2$. Obviously, $\left(S-\left\{v_{1}, v_{2}, v_{3}, s, u, w\right\}\right) \cup\left\{v_{1}, v_{3}, w\right\}$ is a 2 -dominating set for T with cardinality less than $|S|$. Therefore, $\operatorname{sd}_{\gamma_{2}}(T)=1$, a contradiction. Thus v_{3} is adjacent to $\operatorname{deg}\left(v_{3}\right)-2$ leaves. Let $u_{1}, \ldots, u_{\operatorname{deg}\left(v_{3}\right)-2}$ be the leaves adjacent to v_{3}. Assume $T^{\prime}=$ $T-\left\{u_{1}, \ldots, u_{\operatorname{deg}\left(v_{3}\right)-2}, v_{1}, v_{2}\right\}$. By Proposition $2.2\left(\right.$ Part 3) $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+\operatorname{deg}\left(v_{3}\right)-1$ and $\operatorname{sd}_{\gamma_{2}}(T) \leq \operatorname{sd}_{\gamma_{2}}\left(T^{\prime}\right)$. Since $\operatorname{sd}_{\gamma_{2}}(T)=2$, by Theorem 1.1, $\operatorname{sd}_{\gamma_{2}}\left(T^{\prime}\right)=2$. Hence, by the inductive hypothesis, $T^{\prime} \in \mathcal{F}$. Since v_{3} is a leaf in $T^{\prime}, s t a_{T^{\prime}}\left(v_{3}\right)=A$ and T can be obtained from T^{\prime} by applying operation \mathfrak{T}_{4} once and operations \mathfrak{T}_{1} or $\mathfrak{T}_{2}, \operatorname{deg}\left(v_{3}\right)-2$ times. Thus $T \in \mathcal{F}$ and the proof is complete.

REFERENCES

[1] H. Aram, S.M. Sheikholeslami, O. Favaron, Domination subdivision numbers of trees, Discrete Math. 309 (2009), 622-628.
[2] M. Atapour, A. Khodkar, S.M. Sheikholeslami, Characterization of double domination subdivision number of trees, Discrete Appl. Math. 155 (2007), 1700-1707.
[3] M. Atapour, S.M. Sheikholeslami, A. Khodkar, Trees whose Roman domination subdivision number is 2, Util. Math. 82 (2010), 227-240.
[4] M. Atapour, S.M. Sheikholeslami, A. Hansberg, L. Volkmann, A. Khodkar, 2-domination subdivision number of graphs, AKCE J. Graphs Combin. 5 (2008), 169-177.
[5] M. Blidia, M. Chellali, T.W. Haynes, Characterizations of trees with equal paired and double domination numbers, Discrete Math. 306 (2006), 1840-1845.
[6] M. Blidia, M. Chellali, L. Volkmann, Bounds on the 2-domination number of graphs, Util. Math. 71 (2006), 209-216.
[7] M. Chellali, Bounds on the 2-domination number in cactus graphs, Opuscula Math. 26 (2006), 5-12.
[8] P. Dankelmann, J.H. Hattingh, M.A. Henning, H.C. Swart, Trees with equal domination and restrained domination numbers, J. Global Optim. 34 (2006), 597-607.
[9] M. Dorflinga, W. Goddard, M.A. Henning, C.M. Mynhardt, Construction of trees and graphs with equal domination parameters, Discrete Math. 306 (2006), 2647-2654.
[10] T.W. Haynes, M.A. Henning, A characterization of i-excellent trees, Discrete Math. 248 (2002), 69-77.
[11] T.W. Haynes, M.A. Henning, L. Hopkins, Total domination subdivision numbers of trees, Discrete Math. 286 (2004), 195-202.
[12] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[13] A. Hansberg, L. Volkmann, On graphs with equal domination and 2-domination numbers, Discrete Math. 308 (2008), 2277-2281.
[14] H. Karami, A. Khodkar, S.M. Sheikholeslami, Trees whose double domination number is twice their domination number, Congr. Numer. 186 (2007), 49-56.
[15] R.S. Shaheen, Bounds for the 2-domination number of toroidal grid graphs, Int. J. Comput. Math. 86 (2009), 584-588.
[16] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc., 2000.

M. Atapour

Azarbaijan University of Tarbiat Moallem
Department of Mathematics
Tabriz, I.R. Iran
S.M. Sheikholeslami
s.m.sheikholeslami@azaruniv.edu

Azarbaijan University of Tarbiat Moallem
Department of Mathematics
Tabriz, I.R. Iran

Abdollah Khodkar
akhodkar@westga.edu

University of West Georgia
Department of Mathematics
Carrollton, GA 30118, USA
Received: June 18, 2010.
Revised: September 2, 2011.
Accepted: October 3, 2011.

