9 research outputs found

    Effects of energy level and PMSG dose on blood progesterone, insulin and FSH concentration in Zel ewes prior to and after mating

    Get PDF
    About 184 Zel ewes, 3-5 years of age and a body weight of between 40 and 45 kg were used in the trial. Ewes were randomly allocated to 4 treatments groups based on BW and age (46 ewes/group). All of the ewes were fed in two nutritional groups including low (2 mcal kg-1) and high (2.3 mcal kg-1) metabolizeble energy diet. Ewes received experimental diet until 28th day of experiment. The estrous cycles of ewes were synchronized using SIDR and 2 levels of PMSG (300 and 500 IU). Treatments include: 1-High energy and 300 IU PMSG (H300), 2-High energy and 500 IU PMSG (H500), 3-Low energy and 300 IU PMSG (L300) and 4-Low energy and 500 IU PMSG (L300). Jugular blood samples were collected from ewes using vacutainers at 10 h in first day of experiment, CIDR insert day, CIDR removal day before mating and 120 h after mating. Bloods samples centrifuged at 3000x g for 15 min then serum immediately separated and kept frozen at -20°C until analysis for insulin, FSH and progesterone. Repeated measurements used for data analysis. The result showed that there were no any significant difference between two groups weight before start the experiment (p>0.05). During the experiment high level of energy increased the body weight than low level group (p0.05) but high level of energy decreased the insulin concentration significantly (p<0.05). In this study PMSG had no any significant effect on blood metabolites such as FSH, Insulin and progesterone

    Effects of Processing Methods of Barley Grain and Non-Protein Nitrogen Sources on Rumen Degradability Characteristics, Gas Production and Microbial Protein Synthesis in Afshari Breeding Fattening Lambs

    Get PDF
    Introduction: Lack of animal feed, especially with development of industrial methods of animal husbandry waste in many parts of the world, has led farmers and researchers to try identifying and using agricultural and livestock waste and new food sources for animal nutrition, including poultry manure and urea is mentioned in the diet of ruminants. Due to the fact that no research has been done on the effect of barley grain processing methods and non-protein nitrogen sources in the diet on rumen degradability, gas production and microbial protein synthesis in sheep, the present study was conducted.Materials and methods: This experiment was conducted in a completely randomized design with seven treatments including a control treatment containing whole barley grain (without milling) and without urea and chicken manure, treatments 2, 3 and 4 containing processing method of milling, filling and pelleting with a certain level of urea, respectively. (1%) And treatments 5, 6 and 7 containing processing methods of milling, filling and pelleting with a certain level of poultry manure (12%) were performed on sheep. Each treatment consisted of 5 fattening lambs at the age of 3 months 24±1 which were kept individually in separate cages for 14 days of acclimatization period and 84 days of fattening period. In the second experiment, rumen degradability of dry matter, crude protein and NDF of experimental diets were measured using a nylon bag method with 3 fistulated male sheep that were fed in the maintenance level. Extent and rate of gas production were done based on Menk and Stingas. The NH3-N concentration was determined following the Broderick and Kang (1980) technique. Purine derivatives and was measured by the method of Chen and Gomes (1995). Rumen fluid was collected for 5 consecutive days in the end of each period and ruminal fermentation parameters containing pH and NH3-N and were determined. Urine of sheep was collected end of each period for 5 days and microbial protein synthesis was estimated by measuring purine base. Data were analyzed using SAS software version 9.9 (54) using GLM procedure.Results and Discussion: The apparent digestibility of dry matter and organic matter were significantly different, and the control treatment (whole barley grain without urea and poultry manure) had the highest apparent digestibility. Digestibility in non-fibrous carbohydrates was significantly different, so that treatment 5 (processing method of milling with poultry manure) had the highest apparent digestibility. Different parameters of degradability of dry matter, crude protein and insoluble fibers in neutral detergent of experimental treatments indicated significant differences between treatments (P<0.05). Barley grain processing with non-protein nitrogen sources caused a significant difference in the fast decomposing part, slow decomposing part and degradable part of dry matter, crude protein and insoluble fibers in the crude protein neutral detergent of experimental treatments. Effective degradability of dry matter, crude protein and insoluble fibers in neutral detergent at 2, 4 and 6% per hour passage rates had a significant difference between experimental treatments. The results showed that there was a significant difference between the experimental treatments in terms of gas production parameters and the amount of gas produced in 96 hours (P<0.05). There was a significant difference between experimental treatments in terms of digestibility of organic matter, amount of metabolizable energy and concentration of short-chain volatile fatty acids. The highest pH was assigned to treatment 7 (6.30) and the lowest pH was assigned to treatment 1 (6.10). Ammonia nitrogen had a significant difference in experimental treatments. The highest ammonia nitrogen was related to treatment 5 (11.45 mg/dL) and the lowest ammonia nitrogen was related to treatment 3 (10.38 mg/dL). The excretion rate of each of the purine derivatives (allantoin, uric acid, xanthine + hypoxanthine) and the total urinary excretion of purine derivatives and the amount of microbial protein synthesized in the rumen were affected by the test diets and the observed difference was significant (P<0.05). There was a significant difference in rumen pH in experimental treatments. The results showed that barley grain processing methods with non-protein nitrogen sources had a significant effect on rumen degradability, gas production, rumen parameters and microbial protein synthesis compared to the control group.Conclusion: In general, the use of urea (1%) and poultry manure (12%) with different methods of barley grain processing without negative effects on rumen degradability, rumen liquid parameters and gas production in terms of microbial protein synthesis can be useful

    Milk Supplemented with Organic Iron Improves Performance, Blood Hematology, Iron Metabolism Parameters, Biochemical and Immunological Parameters in Suckling Dalagh Lambs

    No full text
    This study was conducted to investigate the effect of milk supplemented with organic iron on performance, blood hematology, iron metabolism parameters, biochemical and immunological parameters in suckling lambs. Thirty-six newborn Dalagh lambs were randomly divided into three groups with 12 replications. The control group was fed with milk without organic iron. The other two groups were fed milk supplemented with 25 and 50 mg/d organic iron, respectively. During the experiment, increased daily weight gain and total body weight were observed in the iron-supplemented groups. An increase in the levels of red blood cell, hemoglobin, hematocrit, mean corpuscular hemoglobin, and mean corpuscular concentration in iron supplemented groups was indicated. Consumption of organic iron caused a significant decrease in plasma copper concentration. Total antioxidant status level was lower, but levels of glutathione peroxidase, superoxide dismutase, and catalase were higher in iron supplemented groups. In organic iron supplemented groups, insulin and thyroid hormones levels were significantly increased, and glucose level was significantly decreased. In organic iron supplemented groups, alkaline phosphatase level significantly increased, and aminotransferase level significantly decreased. Overall, the use of organic iron in the milk improved the performance and health in suckling lambs, and since a lower level of supplementation is naturally preferable, supplementation of milk with 25 mg/d organic iron is recommended

    Effects of Environmental Temperature and Humidity on Milk Composition, Microbial Load, and Somatic Cells in Milk of Holstein Dairy Cows in the Northeast Regions of Iran

    No full text
    The present study aims to examine the relationships between temperature and humidity and milk composition, microbial load, and somatic cells in the milk of Holstein dairy cows. For this purpose, the temperature–humidity index, ambient temperature, and relative humidity data were obtained from the nearest weather stations. Production data were obtained from four dairy farms in Golestan province, Iran, collected from 2016 to 2021. The traits investigated were protein, fat, solids-not-fat (SNF), microbial load, and somatic cell count (SCC) in milk. The effects of the environmental temperature, humidity, month, and season on the milk composition, microbial load, and somatic cells were analyzed through analysis of variance. The effects of environmental temperature, humidity, month, and season on the milk composition, microbial load, and somatic cell composition were analyzed using a mixed procedure with a restricted maximum likelihood model. Although our findings revealed that there were significant differences in fat, protein, SNF, and SCC among the different months of the year (p p p < 0.01). When the humidity increased from 54% to 82%, the milk protein, fat, SNF, and SCC significantly increased, by approximately 3.61%, 4.84%, 1.06%, and 10.2%, respectively; meanwhile, the microbial count in milk significantly decreased, by approximately 16.3%. The results demonstrate that there is a negative correlation between different months of the year, temperature, and the humidity of the environment, in terms of milk components and SCC. Our findings demonstrate that the optimum performance, in terms of milk composition, occurred in the first quarter of the year. As temperature increases and humidity decreases, milk quality decreases. Therefore, the adverse effects of environmental conditions on agricultural profits are not negligible, and strategies to better deal with the negative environmental effects are needed in order to improve milk quality in dairy cows

    Isolation, characterization, and mesodermic differentiation of stem cells from adipose tissue of camel (Camelus dromedarius)

    No full text
    Adipose-derived stem cells are an attractive alternative as a source of stem cells that can easily be extracted from adipose tissue. Isolation, characterization, and multi-lineage differentiation of adipose-derived stem cells have been described for human and a number of other species. Here we aimed to isolate and characterize camel adipose-derived stromal cell frequency and growth characteristics and assess their adipogenic, osteogenic, and chondrogenic differentiation potential. Samples were obtained from five adult dromedary camels. Fat from abdominal deposits were obtained from each camel and adipose-derived stem cells were isolated by enzymatic digestion as previously reported elsewhere for adipose tissue. Cultures were kept until confluency and subsequently were subjected to differentiation protocols to evaluate adipogenic, osteogenic, and chondrogenic potential. The morphology of resultant camel adipose-derived stem cells appeared to be spindle-shaped fibroblastic morphology, and these cells retained their biological properties during in vitro expansion with no sign of abnormality in karyotype. Under inductive conditions, primary adipose-derived stem cells maintained their lineage differentiation potential into adipogenic, osteogenic, and chondrogenic lineages during subsequent passages. Our observation showed that like human lipoaspirate, camel adipose tissue also contain multi-potent cells and may represent an important stem cell source both for veterinary cell therapy and preclinical studies as well

    Fat harvesting site is an important determinant of proliferation and pluripotency of adipose-derived stem cells

    No full text
    To define the optimal fat harvest site and detect any potential differences in adipose-derived stem cells (ASCs) proliferation properties in camels, aspirates from the abdomen and hump sites were compared. Obtained results revealed that ASCs from both abdomen and hump exhibited spindle-shaped and fibroblast-like morphology with hump-derived ASCs being smaller in size and narrower in overall appearance than abdominal ASCs. Abdominal ASCs required a greater time for proliferation than the hump-derived cells. These results were further confirmed with a tetrazolium-based colorimetric assay (MTT) which showed a greater cell proliferation rate for hump ASCs than for the abdomen. Under inductive conditions, ASCs from both abdominal and hump fat deposits maintained their lineage differentiation potential into adipogenic, chondrogenic, and osteogenic lineages during subsequent passages without any qualitative difference. However, expression of alkaline phosphatase was higher in osteogenic differentiated cells from the hump compared with those of the abdomen. Moreover, the increase in calcium content in hump-derived stem cells was higher than that in abdominal-derived stem cells. In conclusion, our findings revealed that ASCs can be obtained from different anatomical locations, although ASCs from the hump fat region may be the ideal stem cell sources for use in cell-based therapies. (C) 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved
    corecore