37 research outputs found

    Basement Membrane Reconstruction in Human Skin Equivalents Is Regulated by Fibroblasts and/or Exogenously Activated Keratinocytes

    Get PDF
    This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence of serum and exogenous growth factors. The expression of various BM components was analyzed on the protein and mRNA level. Irrespective of the presence or absence of fibroblasts, keratin 14, hemidesmosomal proteins plectin, BP230 and BP180, and integrins α1β1, α2β1, α3β1, and α6β4 were expressed but laminin 1 was absent. Only in the presence of fibroblasts or of various growth factors, laminin 5 and laminin 10/11, nidogen, uncein, type IV and type VII collagen were decorating the dermal/epidermal junction. These findings indicate that the attachment of basal keratinocytes to the dermal matrix is most likely mediated by integrins α1β1 and α2β1, and not by laminins that bind to integrin α6β4 and that the epithelial–mesenchymal cross-talk plays an important role in synthesis and deposition of various BM components

    The effect of TGFβRI inhibition on fibroblast heterogeneity in hypertrophic scar 2D in vitro models.

    Get PDF
    In burn patients, wound healing is often accompanied by hypertrophic scarring (HTS), resulting in both functional and aesthetic problems. HTSs are characterized by abundant presence of myofibroblasts (MFs) residing in the dermis. HTS development and MF persistence is primarily regulated by TGF-β signalling. A promising method to target the transforming growth factor receptor I (TGFβRI; also known as activin-like kinase 5 (ALK5)) is by making use of exon skipping through antisense oligonucleotides. In HTS the distinguishing border between the papillary dermis and the reticular dermis is completely abrogated, thus exhibiting a one layered dermis containing a heterogenous fibroblast population, consisting of papillary fibroblasts (PFs), reticular fibroblasts (RFs) and MFs. It has been proposed that PFs, as opposed to RFs, exhibit anti-fibrotic properties. Currently, it is still unclear which fibroblast subtype is most affected by exon skipping treatment. Therefore, the aim of this study was to investigate the effect of TGFβRI inhibition by exon skipping in PF, RF and HTS fibroblast monocultures. Morphological analyses revealed the presence of a PF-like population after exon skipping in the different fibroblast cultures. This observation was further confirmed by the expression of genes specific for PFs, demonstrated by qPCR analyses. Further investigations on mRNA and protein level revealed that indeed MFs and to a lesser extent RFs are targeted by exon skipping. Furthermore, collagen gel contraction analysis showed that ALK5 exon skipping reduced TGF-β- induced contraction together with decreased alpha-smooth muscle actin expression levels. In conclusion, we show for the first time that exon skipping primarily targets pro-fibrotic fibroblasts. This could be a promising step towards reduced HTS development of burn tissue

    Detection of alpha-toxin and other virulence factors in biofilms of staphylococcus aureus on polystyrene and a human epidermalmodel

    Get PDF
    Background & Aim: The ability of Staphylococcus aureus to successfully colonize (a)biotic surfaces may be explained by biofilm formation and the actions of virulence factors. The aim of the present study was to establish the presence of 52 proteins, including virulence factors such as alpha-toxin, during biofilm formation of five different (methicillin resistant) S. aureus strains on Leiden human epidermal models (LEMs) and polystyrene surfaces (PS) using a competitive Luminex-based assay. Results: All five S. aureus strains formed biofilms on PS, whereas only three out of five strains formed biofilms on LEMs. Out of the 52 tested proteins, six functionally diverse proteins (ClfB, glucosaminidase, IsdA, IsaA, SACOL0688 and nuclease) were detected in biofilms of all strains on both PS and LEMs. At the same time, four toxins (alpha-toxin, gamma-hemolysin B and leukocidins D and E), two immune modulators (formyl peptide receptor-like inhibitory protein and Staphylococcal superantigen-like protein 1), and two other proteins (lipase and LytM) were detectable in biofilms by all five S. aureus strains on LEMs, but not on PS. In contrast, fibronectinbinding protein B (FnbpB) was detectable in biofilms by all S. aureus biofilms on PS, but not on LEMs. These data were largely confirmed by the results from proteomic and transcriptomic analyses and in case of alpha-toxin additionally by GFP-reporter technology. Conclusion: Functionally diverse virulence factors of (methicillin-resistant) S. aureus are present during biofilm formation on LEMs and PS. These results could aid in identifying novel targets for future treatment strategies against biofilm-associated infections

    Trichothiodystrophy-associated MPLKIP maintains DBR1 levels for proper lariat debranching and ectodermal differentiation

    Get PDF
    The brittle hair syndrome Trichothiodystrophy (TTD) is characterized by variable clinical features, including photosensitivity, ichthyosis, growth retardation, microcephaly, intellectual disability, hypogonadism, and anaemia. TTD-associated mutations typically cause unstable mutant proteins involved in various steps of gene expression, severely reducing steady-state mutant protein levels. However, to date, no such link to instability of gene-expression factors for TTD-associated mutations in MPLKIP/TTDN1 has been established. Here, we present seven additional TTD individuals with MPLKIP mutations from five consanguineous families, with a newly identified MPLKIP variant in one family. By mass spectrometry-based interaction proteomics, we demonstrate that MPLKIP interacts with core splicing factors and the lariat debranching protein DBR1. MPLKIP-deficient primary fibroblasts have reduced steady-state DBR1 protein levels. Using Human Skin Equivalents (HSEs), we observed impaired keratinocyte differentiation associated with compromised splicing and eventually, an imbalanced proteome affecting skin development and, interestingly, also the immune system. Our data show that MPLKIP, through its DBR1 stabilizing role, is implicated in mRNA splicing, which is of particular importance in highly differentiated tissue.</p

    Recessive Epidermolysis Bullosa Simplex Phenotype Reproduced in Vitro : Ablation of Keratin 14 Is Partially Compensated by Keratin 17

    No full text
    Recessive epidermolysis bullosa simplex (REBS) is characterized by generalized cutaneous blistering in response to mechanical trauma. This results from fragility of the basal keratinocytes that lack keratin tonofilaments because of homozygote null mutation in the keratin 14 gene. REBS patients display in addition focal dyskeratotic skin lesions with histology of epidermolytic hyperkeratosis (EHK) and tonofilament clumping in the suprabasal layers of the epidermis. In this study we examined whether it is possible to mimic in vitro the bullous and dyskeratotic cellular phenotype. For this purpose, fibroblasts from nondyskeratotic (K14−/−) and dyskeratotic (K14−/−) skin of a REBS patient and fibroblasts from a healthy donor (K14+/+) were isolated and incorporated into collagen matrices. Subsequently, fresh biopsies originating from the nondyskeratotic and dyskeratotic skin of the patient and from a healthy donor were placed onto the collagen matrices and cultured at the air-liquid interface. Epidermal morphogenesis was evaluated on the basis of tissue morphology and the expression of a series of keratins. The results of the present study indicate that basal cell vacuolization in REBS can be mimicked in vitro but not the EHK. Fibroblasts seem to play an important regulatory role in establishing the REBS phenotype. These findings suggest that wild-type fibroblasts may enhance the stability of K14−/− keratinocytes in vitro

    Different Gene Expression Patterns in Human Papillary and Reticular Fibroblasts

    Get PDF
    The dermis contains two distinct layers: the papillary and the reticular layers. In vitro cultures of the fibroblasts from these layers show that they are different. However, no molecular markers to differentiate between the two subtypes of fibroblasts are known. We performed gene expression analysis on cultured fibroblasts isolated from the papillary and reticular dermis. In all, 116 genes were found to be expressed differentially. Of these, 13 were validated by quantitative reverse transcriptase–PCR analysis and two markers could be validated at the protein level in monolayer cultures. Three markers showed differential expression in in vivo skin sections. The identified, characteristic markers of the two fibroblast subpopulations provide useful tools to perform functional studies on reticular and papillary fibroblasts

    Fibroblasts facilitate re-epithelialization in wounded human skin equivalents

    No full text
    The re-epithelialization of the wound involves the migration of keratinocytes from the edges of the wound. During this process, keratinocyte migration and proliferation will depend on the interaction of keratinocytes with dermal fibroblasts and the extracellular matrix. The present study aimed to investigate (1) the role of fibroblasts in the re-epithelialization process and on the reconstitution of the dermal-epidermal junction (DEJ) and (2) differential protein expression during re-epithelialization. For both purposes, three-dimensional human skin equivalents (HSE) were used. A full-thickness wound in HSE was introduced by freezing with liquid nitrogen and a superficial wound by linear incision with a scalpel. The closure of the wound in the absence or presence of exogenous growth factors was followed by monitoring the rate of re-epithelialization and regeneration of the DEJ. The results obtained in this study demonstrate that fibroblasts facilitate wound closure, but they differentially affected the deposition of various basement membrane components. The deposition of laminin 5 at the DEJ was delayed in superficial wounds as compared to the full-thickness wounds. During freeze injury, some basement membrane (BM) components remain associated with the dermal compartment and probably facilitate the BM reconstitution. The re-epithelialization process in full-thickness but not in superficial wounds was accelerated by the presence of keratinocyte growth factor and especially by epidermal growth factor. In addition, we have examined the deposition of various basement membrane components and the differences in protein expression in a laterally expanding epidermis in uninjured HSE. Laminin 5, type IV and VII collagen deposition was decreased in the laterally expanding epidermis, indicating that the presence of these proteins is not required for keratinocyte migration to occur in vitro. Using two-dimensional polyacrylamide gel electrophoresis, we have identified DJ-1, a protein not earlier reported to be differently expressed during the epithelialization process of the skin

    Exon skipping of TGFβRI affects signalling and ECM expression in hypertrophic scar-derived fibroblasts.

    Get PDF
    Background In burn patients, wound healing is often accompanied by hypertrophic scar (HS) development, resulting in both functional and aesthetic problems. HSs are characterised by abundant presence of myofibroblasts that contribute to overproduction of extracellular matrix (ECM) that is regulated by the TGF-β signalling pathway. Studies have shown that inhibition of TGF-β receptors in fibrotic diseases reduces the fibrotic load. In the present study, we aim to inactivate ALK5, also known as TGF-β receptor I, in human HS fibroblasts by exon skipping using antisense oligonucleotides (AONs). Methods HS biopsies were used to isolate and set up fibroblast monocultures. AONs targeting ALK5 were supplemented to the fibroblast cultures to induce exon skipping, while pharmacological ALK5 inhibition was induced using SB431542. AON delivery in HS fibroblasts was examined using immunofluorescence (IF), while TGF-β signalling downstream targets, such as Smad2/3, PAI-1, ACTA2, COL1A1 and COL3A1, were analysed using touchdown polymerase chain reaction (PCR), quantitative PCR (qPCR), IF or western blotting. Results Our data clearly demonstrate that AONs were successfully delivered in the nuclei of HS fibroblasts and that functional exon skipping of ALK5 took place as confirmed with touchdown PCR and qPCR. In addition, exon skipping affected the expression of ECM-related genes, such as type I/III collagens, PAI-1 and CCN2. Moreover, AON treatment did not affect the migration of HS fibroblasts in a model for wound healing. Conclusion Exon skipping is a promising tool to modulate the TGF-β signalling pathway in HS. This would open a therapeutic window for the treatment of patients suffering from HSs

    The effect of PPAR isoform (de)activation on the lipid composition in full-thickness skin models

    No full text
    Human skin equivalents (HSEs) are 3D-cultured human skin models that mimic many aspects of native human skin (NHS). Although HSEs resemble NHS very closely, the barrier located in the stratum corneum (SC) is impaired. This is caused by an altered lipid composition in the SC of HSEs compared with NHS. One of the most pronounced changes in this lipid composition is a high level of monounsaturation. One key enzyme in this change is stearoyl-CoA desaturase-1 (SCD1), which catalyses the monounsaturation of lipids. In order to normalize the lipid composition, we aimed to target a group of nuclear receptors that are important regulators in the lipid synthesis. This group of receptors are known as the peroxisome proliferating activating receptors (PPARs). By (de)activating each isoform (PPAR-α, PPAR-δ and PPAR-γ), the PPAR isoforms may have normalizing effects on the lipid composition. In addition, another PPAR-α agonist Wy14643 was included as this supplement demonstrated normalizing effects in the lipid composition in a more recent study. After PPAR (ant)agonists supplementation, the mRNA of downstream targets, lipid synthesis genes and lipid composition were investigated. The PPAR downstream targets were activated, indicating that the supplements reached the keratinocytes to trigger their effect. However, minimal impact was observed on the lipid composition after PPAR isoform (de) activation. Only the highest concentration Wy14643 resulted in strong, but negative effects on CER composition. Although the novel tested modifications did not result in an improvement, more insight is gained on the nuclear receptors PPARs and their effects on the lipid barrier in full-thickness skin models
    corecore