6 research outputs found

    Structural study of the membrane protein MscL using cell-free expression and solid-state

    Get PDF
    a b s t r a c t High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric a-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR

    Développement et applications de protocoles de synthèse in vitro du canal mécanosensible bactérien à large conductance, pour son étude structurale par résonance magnétique nucléaire en phase solide

    No full text
    Membrane proteins account for almost 30% of the proteome and play essential roles in many cellular mechanisms. The mechanosensitive channel of large conductance MscL is an intrinsic membrane protein of the inner membrane of Escherichia coli. This protein acts as a valve pressure, in a hypo-osmotic down-shock, to prevent the bacterial lysis. In this work, a study of the structural characteristics of MscL in its native environment, the lipid bilayer, by nuclear magnetic resonance in the solid-state is presented. A major problem in determining the three-dimensional structure of membrane proteins by this technique is their overexpression and the analysis of carbon-carbon correlations from uniformly labelled samples. The analysis of MscL by solid-state NMR with a uniform labelling showed spectra with a good resolution, but the overlap of the correlations prevented any identification or assignment of the residues. We showed that selective labelling of the membrane protein MscL by using cell-free synthesis represents a crucial help in improving data sets obtained by NMR in the solid-state. Since the amino acids chemical shifts show a big overlap, different strategies to choose specific labelling patterns to get well-resolved spectra were developed. These strategies are based on chemical shifts prediction, or sequence analysis to isolate unique amino acid pairs. A combined approach was tested. These different approaches showed spectra with a good resolution, and facilitated the identification of amino acids in some cases. The methods developed in this work may gradually help to determine the three-dimensional structure of the mechanosensitive channel MscL, as well as other lipid-dependent membrane proteins.Le génome de différents organismes contient près de 30% de séquences codantes pour des protéines membranaires. Celles-ci sont impliquées dans des processus biologiques tels que la signalisation cellulaire, la transduction énergétique ou le transport des métabolites. Cependant, leur étude structurale se heurte souvent aux problèmes de surexpression, ainsi qu'aux différents inconvénients liés à leur extraction de leur environnement natif. Le canal mécanosensible à large conductance MscL d'Escherichia coli est une protéine intrinsèque de la membrane interne de la bactérie. L'activité de cette protéine est fortement dépendante de la membrane ; en effet, le canal s'ouvre lorsque la pression au niveau de la membrane augmente, lors d'un choc hypoosmotique, relarguant de l'eau et différents substrats afin que la bactérie retrouve un état osmotique adéquat à sa survie. Il est donc essentiel de recueillir des données structurales de la protéine dans son environnement natif. Pour cela, nous proposons une étude structurale de la protéine par résonance magnétique nucléaire en phase solide. La surexpression de la protéine et son marquage aux isotopes 13C et 15N sont deux étapes clés d'un tel projet. Une surexpression bactérienne et un marquage uniforme de la protéine ont été effectués. Les données spectrales obtenues montrent une bonne résolution, mais l'imbrication des corrélations ne permet pas d'en extraire des données structurales. Afin de réduire le nombre de résidus marqués, un marquage spécifique a été appliqué par la voie de la synthèse in vitro. Le premier test a montré que l'approche permettait de réduire le temps d'acquisition, tout en diminuant la quantité d'informations. Différentes méthodes ont ensuite été appliquées pour trouver les meilleures combinaisons d'acides aminés à marquer spécifiquement en synthétisant la protéine in vitro. Ces approches utilisent les programmes de prédiction de déplacements chimiques ou l'analyse de la séquence à la recherche de paires d'acides aminés uniques. Une approche combinatoire a été également testée. Les différents échantillons synthétisés ont montré une bonne résolution, et ont permis l'identification de plusieurs corrélations. Les méthodes développées au cours de ce travail pourront aider progressivement à déterminer la structure de la protéine MscL. Elles pourront également servir à d'autres protéines membranaires pour leur étude par résonance magnétique nucléaire

    The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports

    Get PDF
    Because of the importance of their physiological functions, cell membranes represent critical targets in biological research. Membrane proteins, which make up ≈1/3 of the proteome, interact with a wide range of small ligands and macromolecular partners as well as with foreign molecules such as synthetic drugs, antibodies, toxins, or surface recognition proteins of pathogenic organisms. Whether it is for the sake of basic biomedical or pharmacological research, it is of great interest to develop tools facilitating the study of these interactions. Surface-based in vitro assays are appealing because they require minimum quantities of reagents, and they are suitable for multiplexing and high-throughput screening. We introduce here a general method for immobilizing functional, unmodified integral membrane proteins onto solid supports, thanks to amphipathic polymers called “amphipols.” The key point of this approach is that functionalized amphipols can be used as universal adapters to associate any membrane protein to virtually any kind of support while stabilizing its native state. The generality and versatility of this strategy is demonstrated by using 5 different target proteins, 2 types of supports (chips and beads), 2 types of ligands (antibodies and a snake toxin), and 2 detection methods (surface plasmon resonance and fluorescence microscopy)
    corecore