50 research outputs found

    Revealing the Influence of Doping and Surface Treatment on the Surface Carrier Dynamics in Hematite Nanorod Photoanodes

    Get PDF
    Photoelectrochemical (PEC) water oxidation is considered to be the rate-limiting step of the two half-reactions in light-driven water splitting. Consequently, considerable effort has focused on improving the performance of photoanodes for water oxidation. While these efforts have met with some success, the mechanisms responsible for improvements resulting from photoanode modifications are often difficult to determine. This is mainly caused by the entanglement of numerous properties that influence the PEC performance, particularly processes that occur at the photoanode/electrolyte interface. In this study, we set out to elucidate the effects on the surface carrier dynamics of hematite photoanodes of introducing manganese (Mn) into hematite nanorods and of creating a core-shell structure. Intensity-modulated photocurrent spectroscopy (IMPS) measurements reveal that the introduction of Mn into hematite not only increases the rate constant for hole transfer but also reduces the rate constant for surface recombination. In contrast, the core-shell architecture evidently passivates the surface states where recombination occurs; no change is observed for the charge transfer rate constant, whereas the surface recombination rate constant is suppressed by āˆ¼1 order of magnitude.</p

    Revealing the Influence of Doping and Surface Treatment on the Surface Carrier Dynamics in Hematite Nanorod Photoanodes

    Get PDF
    Photoelectrochemical (PEC) water oxidation is considered to be the rate-limiting step of the two half-reactions in light-driven water splitting. Consequently, considerable effort has focused on improving the performance of photoanodes for water oxidation. While these efforts have met with some success, the mechanisms responsible for improvements resulting from photoanode modifications are often difficult to determine. This is mainly caused by the entanglement of numerous properties that influence the PEC performance, particularly processes that occur at the photoanode/electrolyte interface. In this study, we set out to elucidate the effects on the surface carrier dynamics of hematite photoanodes of introducing manganese (Mn) into hematite nanorods and of creating a core-shell structure. Intensity-modulated photocurrent spectroscopy (IMPS) measurements reveal that the introduction of Mn into hematite not only increases the rate constant for hole transfer but also reduces the rate constant for surface recombination. In contrast, the core-shell architecture evidently passivates the surface states where recombination occurs; no change is observed for the charge transfer rate constant, whereas the surface recombination rate constant is suppressed by āˆ¼1 order of magnitude.</p

    Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells

    Get PDF
    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2ā€‰% under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungstenā€“bismuth vanadate (W:BiVO_4) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light trapping in the BiVO4 photoanode and further optimization of the W gradient doping profile in the photoanode. Various PV cells have been studied in combination with this BiVO_4 photoanode, such as an amorphous silicon (a-Si:H) single junction, an a-Si:H/a-Si:H double junction, and an a-Si:H/nanocrystalline silicon (nc-Si:H) micromorph junction. The highest conversion efficiency, which is also the record efficiency for metal oxide based water-splitting devices, is reached for a tandem system consisting of the optimized W:BiVO_4 photoanode and the micromorph (a-Si:H/nc-Si:H) cell. This record efficiency is attributed to the increased performance of the BiVO_4 photoanode, which is the limiting factor in this hybrid PEC/PV device, as well as better spectral matching between BiVO_4 and the nc-Si:H cell

    Gradient dopant profiling and spectral utilization of monolithic thin-film silicon photoelectrochemical tandem devices for solar water splitting

    Get PDF
    A cost-effective and earth-abundant photocathode based on hydrogenated amorphous silicon carbide (a-SiC:H) is demonstrated to split water into hydrogen and oxygen using solar energy. A monolithic a-SiC:H photoelectrochemical (PEC) cathode integrated with a hydrogenated amorphous silicon (a-SiC:H)/nano-crystalline silicon (nc-Si:H) double photovoltaic (PV) junction achieved a current density of āˆ’5.1 mA cm^(āˆ’2) at 0 V versus the reversible hydrogen electrode. The a-SiC:H photocathode used no hydrogen-evolution catalyst and the high current density was obtained using gradient boron doping. The growth of high quality nc-Si:H PV junctions in combination with optimized spectral utilization was achieved using glass substrates with integrated micro-textured photonic structures. The performance of the PEC/PV cathode was analyzed by simulations using Advanced Semiconductor Analysis (ASA) software

    Nature of Nitrogen Incorporation in BiVO4 Photoanodes through Chemical and Physical Methods

    Get PDF
    In recent years, BiVO4 has been optimized as a photoanode material to produce photocurrent densities close to its theoretical maximum under AM1.5 solar illumination. Its performance is, therefore, limited by its 2.4 eV bandgap. Herein, nitrogen is incorporated into BiVO4 to shift the valence band position to higher energies and thereby decreases the bandgap. Two different approaches are investigated: modification of the precursors for the spray pyrolysis recipe and post-deposition nitrogen ion implantation. Both methods result in a slight red shift of the BiVO4 bandgap and optical absorption onset. Although previous reports on N-modified BiVO4 assumed individual nitrogen atoms to substitute for oxygen, X-ray photoelectron spectroscopy on the samples reveals the presence of molecular nitrogen (i.e., N-2). Density functional theory calculations confirm the thermodynamic stability of the incorporation and reveal that N-2 coordinates to two vanadium atoms in a bridging configuration. Unfortunately, nitrogen incorporation also results in the formation of a localized state of approximate to 0.1 eV below the conduction band minimum of BiVO4, which suppresses the photoactivity at longer wavelengths. These findings provide important new insights on the nature of nitrogen incorporation into BiVO4 and illustrate the need to find alternative lower-bandgap absorber materials for photoelectrochemical energy conversion applications

    Assessing elevated pressure impact on photoelectrochemical water splitting via multiphysics modeling

    No full text
    Abstract Photoelectrochemical (PEC) water splitting is a promising approach for sustainable hydrogen production. Previous studies have focused on devices operated at atmospheric pressure, although most applications require hydrogen delivered at elevated pressure. Here, we address this critical gap by investigating the implications of operating PEC water splitting directly at elevated pressure. We evaluate the benefits and penalties associated with elevated pressure operation by developing a multiphysics model that incorporates empirical data and direct experimental observations. Our analysis reveals that the operating pressure influences bubble characteristics, product gas crossover, bubble-induced optical losses, and concentration overpotential, which are crucial for the overall device performance. We identify an optimum pressure range of 6ā€“8ā€‰bar for minimizing losses and achieving efficient PEC water splitting. This finding provides valuable insights for the design and practical implementation of PEC water splitting devices, and the approach can be extended to other gas-producing (photo)electrochemical systems. Overall, our study demonstrates the importance of elevated pressure in PEC water splitting, enhancing the efficiency and applicability of green hydrogen generation

    Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO<sub>4</sub> Photoanodes

    No full text
    BiVO<sub>4</sub> is considered to be a promising photoanode material for solar water splitting applications. Its performance is limited by two main factors: slow water oxidation kinetics and poor charge separation. We confirm recent reports that cobalt phosphate (Co-Pi) is an efficient water oxidation catalyst for BiVO<sub>4</sub> and report an AM1.5 photocurrent of 1.7 mA/cm<sup>2</sup> at 1.23 V vs RHE for 100 nm spray-deposited, compact, and undoped BiVO<sub>4</sub> films with an optimized Co-Pi film thickness of 30 nm. The charge separation of these films depends strongly on light intensity, ranging from 90% at low light intensities to less than 20% at intensities corresponding to 1 sun. These observations indicate that the charge separation efficiency in BiVO<sub>4</sub> is limited by poor electron transport and not by the presence of bulk defect states, interface traps, or the presence of a Schottky junction at the back-contact
    corecore