16 research outputs found

    Influence of genistein and diadizine on regularity of estrous cycle in cyclic female Wistar rat: interaction with estradiol receptors and vascular endothelial growth factor

    Get PDF
    Background: Isoflavones are estrogenic compounds that exist in soy, clover, and peanuts. They are selective estrogen receptor modulators. Aim: The study was planned to explain the interactions of isoflavones with estrogen receptors alpha (ERα), beta (ERβ), and vascular endothelial growth factor (VEGF) expressions in ovarian and uterine tissues during different stages of the estrous cycle of regular cyclic female Wistar rats. Methods: Thirty-two regular cyclic females were divided equally into control group: fed casein-based diet and isoflavones group: fed casein-based diet and gavaged 50 mg/kg/day soy isoflavones extract 40%. The regularity of estrus cycles was monitored. Final body weight (FBW), weight gain (BWG), and ovarian and uterine weights were estimated. Histopathology and immunohistochemistry for ERα, Erβ, and VEGF in ovarian and uterine tissues were performed. Results: All females (100%, n = 16) in control group showed regularity in estrous cycle compared to 62.5% (n = 10) in isoflavones group. Estrus and diestrus phases revealed prolongation and shortening in isoflavones rats than control, respectively. Nonsignificant variation was noted in the duration of the whole cycle of both groups. FBW and BWG significantly decreased however, ovarian and uterine weights increased significantly in all estrous phases of isoflavones group than control. Histopathology demonstrated an increase in number of follicles/ovaries besides, hyperplasia and proliferation of luminal epithelium with hydropic degeneration in the isoflavones group. Also, uterine connective tissue stroma showed edema in the isoflavones group during all estrous phases. Immunostaining percentages of ERα, Erβ, and VEGF protein expression were significantly elevated in the isoflavones group during all estrous phases. Conclusion: Isoflavones induced irregularity of the estrous cycle that was encountered by increased and altered ERα, Erβ, and VEGF expressions in ovarian and uterine tissues

    The Reno and Hepatoprotective Effects of SAMWA Plant (Cleome droserifolia) Methanolic Extract against Adrenaline-Induced Adverse Effect to Male Rats

    No full text
    Adrenaline is widely used drug to combat several conditions such as allergy and anaphylaxis. The current work was to investigate the renal and hepatic complications following adrenaline injection, in addition, the impact of Cleome (SAMWA) methanolic extract on adrenaline- induced renal and hepatic alterations. Twenty-four male Wister rats were divided equally into four groups; Normal control group received oral distilled water for 30 consecutive days and administered subcutaneous saline on the 31st and 32nd days. The Cleome extract (200 mg/kg) group received Cleome methanolic extract (200 mg/kg, P.O) for 30 consecutive days and administered subcutaneous saline on the 31st and 32nd days. The adrenaline group received distilled water orally for 30 consecutive days and administered subcutaneous adrenaline (2 mg/kg, s.c.) divided into two doses (1 mg/kg, s.c) each on the 31st and 32nd days. Cleome extract (200 mg/kg)/ adrenaline received Cleome methanolic extract (200 mg/kg, P. O) for 30 consecutive days and administered subcutaneous adrenaline (2 mg/kg, s.c.) divided into two doses (1 mg/kg, s.c) each on the 31st and 32nd days. Liver and kidney function biomarkers in addition to histopathological analyses were evaluated. Adrenaline caused alteration in liver and kidney function biomarkers without affecting the histological structure of the liver and the kidney. SAMWA methanolic extract pretreatment significantly decreased serum urea, uric acid, aspartate aminotransferase (AST), alanine transaminase (ALT) and Alkaline Phosphatase (ALP). SAMWA ameliorated serum albumin reduction and total protein induced by adrenaline injection. SAMWA methanolic extract could protect liver and kidney of rats exposed to adrenaline

    Black Seed Thymoquinone Improved Insulin Secretion, Hepatic Glycogen Storage, and Oxidative Stress in Streptozotocin-Induced Diabetic Male Wistar Rats

    No full text
    Diabetes mellitus is one of the metabolic diseases having several complications. Nigella sativa oil (NSO) might have beneficial effects in the treatment of diabetic complications. Thirty-two mature male Wistar rats were equally divided into four experimental groups: control, control NSO 2 mL/kg, streptozotocin- (STZ-) induced diabetic, and diabetic (STZ-induced) treated with oral NSO 2 mg/kg for 30 days. Fasting blood glucose (FBG), insulin, and lipid profile levels were determined. Pancreatic and hepatic tissues were used for catalase and GSH. Histopathology, hepatic glycogen contents, insulin immunohistochemistry, and pancreatic islet morphometry were performed. NSO 2 mL/kg was noticed to decrease (P<0.05) FBG and increase (P<0.05) insulin levels in diabetic rats than in diabetic nontreated animals. Lipid profile showed significant (P<0.5) improvement in diabetic rats that received NSO 2 mL/kg than in the diabetic group. Both pancreatic and hepatic catalase and GSH activities revealed a significant (P<0.05) increment in the diabetic group treated with NSO than in the diabetic animals. NSO improved the histopathological picture and hepatic glycogen contents of the diabetic group as well as increased (P<0.05) insulin immunoreactive parts % and mean pancreatic islet diameter. NSO exerts ameliorative and therapeutic effects on the STZ-induced diabetic male Wistar rats

    Methanolic Phoenix dactylifera L. Extract Ameliorates Cisplatin-Induced Hepatic Injury in Male Rats

    No full text
    This study investigated the ameliorative potential of methanolic date flesh extract (MDFE) against cisplatin-induced hepatic injury. Twenty male rats (weighing 180&ndash;200 g) were allocated into four groups: control; date flesh (DF) group (oral 600 mg/kg MDFE for 21 days); Cis group (7.5 mg/kg i.p. at day 16); and date flesh/cisplatin (DF/Cis) group (oral 600 mg/kg MDFE for 21 days and 7.5 mg/kg i.p. at day 16). Hepatic biochemical parameters in sera, and inflammatory and oxidant/antioxidant hepatic biomarkers were estimated. Hepatic histological changes and the immunohistochemistry of cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-&kappa;B), and alpha smooth muscle actin (&alpha;-SMA) were assessed. Pretreatment with MDFE decreased Cis-triggered liver biochemical parameters, oxidative stress, inflammatory biomarkers, and histological damage. Moreover, MDFE treatment reduced Cis-induced hepatic NF-&kappa;B, COX-2, and &alpha;-SMA protein expression. MDFE exerted a hepatoprotective effect when used concomitantly with Cis. Its effect was mediated via its antioxidant and anti-inflammatory ingredients

    Lycopene: Hepatoprotective and Antioxidant Effects toward Bisphenol A-Induced Toxicity in Female Wistar Rats

    No full text
    Bisphenol A (BPA)—an endocrine disruptor xenoestrogen—is widely spread in the environment. Lycopene (LYC) is an antioxidant phytochemical carotenoid. The hereby study was designed to verify the deleterious effect of BPA on cyclic female rats’ hepatic tissue as well as evaluation of the effect of LYC toward BPA hepatic perturbation. Twenty-eight female Wistar rats were allocated equally into four groups: control group, LYC group (10 mg/kg B.wt), BPA group (10 mg/kg B.wt), and BPA + LYC group (the same doses as former groups). The treatments were given daily via gavage to the rats for 30 days. The rats in BPA displayed high activities of serum liver enzymes with low levels of total proteins (TP) and albumin. Moreover, BPA induced hepatic oxidative stress via depletion of antioxidant enzymes concomitant with augmentation of lipid peroxidation, increased comet tail DNA %, and overexpression of caspase-3. Meanwhile, LYC administration reduced the cytotoxic effects of BPA on hepatic tissue, through improving the liver function biomarkers and oxidant-antioxidant state as well as DNA damage around the control values. These findings were confirmed by hepatic histopathological examination. Finally, LYC credited to have a noticeable protective effect versus BPA provoked oxidative injury and apoptosis of the liver tissue

    Evaluation of Tribulus terrestris Extracts Relative to Metformin on Oxidative Stress and Histopathology of the Liver for Diabetic Male Rats

    No full text
    Insulin-dependent diabetes mellitus (IDDM) is a metabolic condition that induces blood glucose levels to rise due to insulin deficiency and the formation of reactive oxygen species (ROS). The purpose of this study is to assess how efficient the antioxidant extracts Tribulus terrestris (TT) and metformin (MET) are in reducing oxidative stress and histopathology produced by streptozotocin in rat hepatocytes. The 36 male rats weighing 170&ndash;190 g of this study were randomly sorted into 6 groups. The first group was considered a normal control group, and the second and third groups were normal and remedy with MET and TT extract, respectively. The fourth group was positive diabetic, and the fifth and sixth groups were diabetic rats that were treated with MET and TT extract, respectively. Lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST), and glutathione (GSH) were detected, and the histopathology of the liver was evaluated after 8 weeks of treatment. Compared to regulation, morphological changes in the liver were found in diabetic animals, with a rise in LPO and a change in GSH levels as well as CAT and GST activities. The oxidative stress and histological architecture of the hepatocytes caused by hyperglycemia were improved as a result of therapy in the rats with MET and TT extract. Because of its antioxidant activities, diabetic rats with TT extract are more effective than MET in normoglycemia and hepatocyte reconditioning. Beneficial intervention tends to benefit primarily from direct ROS scavenging and CAT, GST, and GSH regeneration

    Soy Isoflavones Ameliorate Metabolic and Immunological Alterations of Ovariectomy in Female Wistar Rats: Antioxidant and Estrogen Sparing Potential

    No full text
    Hormone replacement therapy (HRT) can alleviate estrogen deficiency symptoms especially during menopause. The present study aimed at investigating the effect of soy isoflavones as HRT on immunological and bone health-related parameters with a special focus on the interactions between immunological status and metabolism. Thirty healthy cyclic female Wistar rats were used in this experiment. Ten females were sham-operated, and 20 females were subjected to ovariectomy. Overiectomized (OVX) female rats were randomly divided into 2 groups: the control group (G1, OVX/casein) was fed a casein-based diet, and the second group (G2, OVX/soy) was fed a high soy isoflavone diet. Both groups were compared to a sham-operated group (G3, sham/casein). Treatments continued for 7 weeks. Feed intake, weight gain, and lymphoid organ relative weights were recorded. Some metabolic, immunological, and bone health-related parameters were measured. Moreover, nitric oxide (NO), malondialdehyde (MDA), and total antioxidant capacity (TAC) were determined. Bone histopathology and immunohistochemistry to estrogen receptor alpha (ERα) were done. Feeding soy to OVX females reduced feed intake, weight gain, relative lymphoid organ weight, and T-lymphocytes transformation. Soy isoflavone administration normalized nearly all metabolic and immunological parameters to a level comparable to the sham group via oxidative stress amelioration and bone ERα promotion. Soy isoflavones seemed to be good HRT in estrogen deprivation which modulated the appetite, weight gain, lipid profile, proinflammation, and bone turnover

    Cardioprotective Effect of Flibanserin against Isoproterenol-Induced Myocardial Infarction in Female Rats: Role of Cardiac 5-HT2A Receptor Gene/5-HT/Ca<sup>2+</sup> Pathway

    No full text
    Myocardial infarction (MI) is a life-threatening ischemic disease and is one of the leading causes of morbidity and mortality worldwide. Serotonin (5-HT) release during myocardial ischemia plays an important role in the progression of myocardial cellular injury. This study was conducted to investigate the possible cardioprotective effect of flibanserin (FLP) against isoproterenol (ISO)-induced MI in rats. Rats were randomly divided into five groups and were treated orally (p.o.) with FLP (15, 30, and 45 mg/kg) for 28 days. ISO was administered subcutaneously (S.C.) (85 mg/kg) on the 27th and 28th days to induce MI. ISO-induced myocardial infarcted rats exhibited a significant increase in cardiac markers, oxidative stress markers, cardiac and serum 5-HT levels, and total cardiac calcium (Ca2+) concentration. ISO-induced myocardial infarcted rats also revealed a remarkable alteration of electrocardiogram (ECG) pattern and significantly upregulated expression of the 5-Hydroxytryptamine 2A (5-HT2A) receptors gene. Moreover, ISO-induced myocardial infarcted rats showed significant histopathological findings of MI and hypertrophic signs. However, pretreatment with FLP significantly attenuated the ISO-induced MI in a dose-dependent manner, as the effect of FLP (45 mg/kg) was more pronounced than that of the other two doses, FLP (15 and 30 mg/kg). The present study provides evidence for the cardioprotective efficacy of FLP against ISO-induced MI in rats
    corecore