123 research outputs found

    Retrofitting Rural Dwellings in Delta Region to Enhance Climate Change Mitigation in Egypt

    Get PDF
    The current rural dwelling pattern in the Delta in Egypt consumes much energy to achieve dwellers’ thermal comfort, increasing greenhouse gas emissions contributing to climate change threatening the region’s coastal parts. Therefore, this study highlights the potential of retrofitting the existing rural house utilizing pervasive construction technologies in diminishing energy consumption and carbon dioxide emissions as a climate change mitigation strategy. The current modern rural house and the construction typologies were characterized. This study selected a typical modern rural dwelling located in Al-Gharbia Governorate in the Delta region. The suggested retrofitting strategies were applied to the external building envelope. The impact on the annual energy consumption of cooling and heating loads was evaluated using an Energy Performance Assessment Tool (Design Builder). An optimal envelope configuration was suggested, then an economic assessment and an investigation to the local acceptance were provided. The results showed that using the commonly used construction techniques as a retrofitting strategy can plummet the energy consumption and CO2 emissions by one-third worthy of mentioning that the locals have shown a lack of interest in the investment in retrofitting their buildings as well as the economic model showed that the investment is not profitable. Further studies can be made by the author considering investigating different building typologies and engaging other stakeholders

    Rural Energy Communities as Pillar towards Low Carbon Future in Egypt. Beyond COP27

    Get PDF
    Egypt pays extraordinary attention to climate action, which is gaining momentum, coinciding with reaching the peak of the status quo by hosting the 2022 United Nations Climate Change Conference, Conference of Parties (COP27). Renewable energy sources are one of the principal axes of the state’s plan to combat climate change and open new horizons toward decarbonization. Rural commons act as a food basket and are essential to function in urban areas and enhance ecosystem services, even though currently they are facing extraordinary environmental challenges. Therefore, this study aims to restore the function of the rural commons from consumerism to productivity as an energy basket and create a tendency and momentum toward a self-sufficiency dogma by promoting the rural energy community concept from a top-down approach in Egypt. Two steps can articulate this: First, defining the legal key concept and showing its roots in European policies to provide a direction to this research. Second, by analyzing the current Egyptian legalization, laws, efforts, and best practices, those could address, allow, and encourage the concept’s core. The results proved that this is the first research to discuss the concept from the climate–energy–land use perspective, integrated with a previous bottom-up intervention. Meanwhile, it explains the current state of knowledge and a better understanding of the institutional context, showing the high level of coordination of cross sectors and proving that rural energy communities are presented in the bottom-up practices. This can support decisionmakers and paves the way for researchers, academic bodies, and energy experts to explore other insights

    ISAR Image formation with a combined Empirical Mode Decomposition and Time-Frequency Representation

    No full text
    International audienceIn this paper, a method for Inverse Synthetic Aperture Radar (ISAR) image formation based on the use of the Complex Empirical Mode Decomposition (CEMD) is proposed. The CEMD [1] which based on the Empirical Mode Decomposition (EMD) is used in conjunction with a Time-Frequency Representation (TFR) to estimate a 3-D time-range-Doppler Cubic image, which we can use to effectively extract a sequence of ISAR 2-D range-Doppler images. The potential of the proposed method to construct ISAR image is illustrated by simulations results performed on synthetic data and compared to 2-D Fourier Transform and TFR methods. The simulation results indicate that this method can provide ISAR images with a good resolution. These results demonstrate the potential application of the proposed method for ISAR image formation

    Feshbach-Villars oscillator (FVO) in Kaluza-Klein Theory (KKT)

    Full text link
    This research investigates the relativistic quantum dynamics of spin-0 scalar massive charged particles via the relativistic Feshbach-Villars oscillator in the background of the Kaluza-Klein Theory. We solve the Feshbach-Villars equation in the abckground of a cosmic string spec-time in the context of the Kaluza-Klein and presented the eigenvalue solution. Afterward, we rewrite this system in the case of the Feshbach-Villars quantum oscillator and obtain the eigenvalue analytically. Finally, we study the interaction of the Feshbach-Villars equation and oscillator in a cosmic dislocation in the Som-Raychaudhuri in the context of the Kaluza-Klein Theory and solve the wave equation analytically. We analyze the influence of topological defect in the quantification of energy and wave function of the Feshbach-Villars oscillator and with the external fields in the last oneComment: arXiv admin note: text overlap with arXiv:2304.12496 (Accepted for publication In Nuclear Physics B

    An effective control of an isolated induction generator supplying DC load for wind power converting applications

    Get PDF
    The aim of this paper is to perform a simple and robust control method based on the well-known sliding control approach for a self-excited induction generator supplying an isolated DC load; this adopted technique does not require much computation and could be easily implemented in practice. In this context, the present work will begin with a mathematical development of this control technique and its application to the self-excited induction generator case. For this purpose, the machine provides the produced active power to the load through a static PWM converter equipped with a single capacitor on the DC side. In order to insure the output DC-bus voltage regulation with respect to the load-power demands and the rotor speed fluctuations, the required stator currents references are computed by considering the reactive power required for the machine core magnetization, the induced voltages through the stator windings and the active power set value obtained from the corresponding sliding mode DC-bus voltage controller. Regarding the nonlinearity of the DC-bus voltage mathematical model and the discontinuity characterizing the converter-machine behavior association, the sliding mode strategy will constitute a perfect tool to sizing the controller structure with high control performances. Results of simulation carried out to demonstrate the proposed control validity are presented.Целью данной статьи является разработка простого и надежного метода управления, основанного на хорошо известном подходе к управлению скольжением для асинхронного генератора с самовозбуждением, питающего изолированную нагрузку постоянного тока; данный принятый метод не требует больших объемов вычислений и может быть легко реализован на практике. В этом контексте данная работа начинается с развития математических основ этого метода управления и его применения в случае асинхронного генератора с самовозбуждением. Для этого машина подает произведенную активную мощность в нагрузку через статический ШИМ-преобразователь, оснащенный единственным конденсатором на стороне постоянного тока. Чтобы обеспечить регулирование выходного напряжения шины постоянного тока с учетом требований к нагрузке и колебаниям скорости вращения ротора, требуемые токи статора рассчитываются с учетом реактивной мощности, необходимой для намагничивания сердечника машины, наведенных напряжений в обмотках статора и заданного значения активной мощности, полученного из соответствующего контроллера напряжения шины постоянного тока в режиме скольжения. Что касается нелинейности математической модели напряжения шины постоянного тока и неоднородности, характеризующей поведение системы «преобразователь-машина», стратегия скользящего режима будет представлять собой идеальный инструмент для определения размеров конструкции контроллера с высокими характеристиками управления. Для демонстрации обоснованности предлагаемого метода контроля, приведены результаты выполненного моделирования

    Robust Control of Series Active Power Filters for Power Quality Enhancement in Distribution Grids: Simulation and Experimental Validation

    Get PDF
    © 2020 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/.This paper presents a simulation study and an experimental implementation of a single-phase Series Active Power Filter (SAPF) for the mitigation of harmonics in the load voltage. The aim is to regulate the injection voltage of the SAPF to compensate the grid voltage via the injection transformer in addition to maintaining the load voltage stable. The control strategies investigated in this work include Backstepping Sliding Mode Control (BSMC) and a neuro-fuzzy controller based on ANFIS (Adaptive Neuro-Fuzzy Inference System) l. The proposed control strategies for the single-phase SAPF are initially evaluated in simulations under MATLAB/Simulink and then validated on a laboratory-scale hardware experimental set up consisting of a source and a single-phase SAPF. A comparative study of these controllers with respect to their performance and robustness in mitigating power quality against voltage disturbances and harmonics is presented. Both simulation and experimental results have demonstrated that ANFIS-based controller was able to achieve superior performance and a lower total harmonic distortion (THD) as compared to the other control methods.Peer reviewedFinal Accepted Versio
    corecore