25 research outputs found

    A fruitful alliance: the synergy between Atopobium vaginae and Gardnerella vaginalis in bacterial vaginosis-associated biofilm

    Get PDF
    Objectives: Bacterial vaginosis (BV) is characterised by a change in the microbial composition of the vagina. The BV-associated organisms outnumber the health-associated Lactobacillus species and form a polymicrobial biofilm on the vaginal epithelium, possibly explaining the difficulties with antibiotic treatment. A better understanding of vaginal biofilm with emphasis on Atopobium vaginae and Gardnerella vaginalis may contribute to a better diagnosis and treatment of BV. Methods: To this purpose, we evaluated the association between the presence of both bacteria by fluorescence in situ hybridisation (FISH) and BV by Nugent scoring in 463 vaginal slides of 120 participants participating in a clinical trial in Rwanda. Results: A bacterial biofilm was detected in half of the samples using a universal bacterial probe. The biofilm contained A. vaginae in 54.1% and G. vaginalis in 82.0% of the samples. A. vaginae was accompanied by G. vaginalis in 99.5% of samples. The odds of having a Nugent score above 4 were increased for samples with dispersed G. vaginalis and/or A. vaginae present (OR 4.5; CI 2 to 10.3). The probability of having a high Nugent score was even higher when a combination of adherent G. vaginalis and dispersed A. vaginae was visualised (OR 75.6; CI 13.3 to 429.5) and highest when both bacteria were part of the biofilm (OR 119; CI 39.9 to 360.8). Conclusions: Our study, although not comprehensive at studying the polymicrobial biofilm in BV, provided a strong indication towards the importance of A. vaginae and the symbiosis of A. vaginae and G. vaginalis in this biofilm

    Obtaining Valid Laboratory Data in Clinical Trials Conducted in Resource Diverse Settings: Lessons Learned from a Microbicide Phase III Clinical Trial

    Get PDF
    BACKGROUND: Over the last decade several phase III microbicides trials have been conducted in developing countries. However, laboratories in resource constrained settings do not always have the experience, infrastructure, and the capacity to deliver laboratory data meeting the high standards of clinical trials. This paper describes the design and outcomes of a laboratory quality assurance program which was implemented during a phase III clinical trial evaluating the efficacy of the candidate microbicide Cellulose Sulfate 6% (CS) [1]. METHODOLOGY: In order to assess the effectiveness of CS for HIV and STI prevention, a phase III clinical trial was conducted in 5 sites: 3 in Africa and 2 in India. The trial sponsor identified an International Central Reference Laboratory (ICRL), responsible for the design and management of a quality assurance program, which would guarantee the reliability of laboratory data. The ICRL provided advice on the tests, assessed local laboratories, organized trainings, conducted supervision visits, performed re-tests, and prepared control panels. Local laboratories were provided with control panels for HIV rapid tests and Chlamydia trachomatis/Neisseria gonorrhoeae (CT/NG) amplification technique. Aliquots from respective control panels were tested by local laboratories and were compared with results obtained at the ICRL. RESULTS: Overall, good results were observed. However, discordances between the ICRL and site laboratories were identified for HIV and CT/NG results. One particular site experienced difficulties with HIV rapid testing shortly after study initiation. At all sites, DNA contamination was identified as a cause of invalid CT/NG results. Both problems were timely detected and solved. Through immediate feedback, guidance and repeated training of laboratory staff, additional inaccuracies were prevented. CONCLUSIONS: Quality control guidelines when applied in field laboratories ensured the reliability and validity of final study data. It is essential that sponsors provide adequate resources for implementation of such comprehensive technical assessment and monitoring systems. TRIAL REGISTRATION: ClinicalTrials.gov NCT00153777 and Current Controlled Trials ISRCTN9563838

    Effectiveness of Cellulose Sulfate Vaginal Gel for the Prevention of HIV Infection: Results of a Phase III Trial in Nigeria

    Get PDF
    BACKGROUND: This trial evaluated the safety and effectiveness of 6% cellulose sulfate vaginal gel in preventing male-to-female vaginal transmission of HIV, gonorrhea and chlamydial infection. METHODS: This Phase III, double-blind, randomized, placebo-controlled trial was conducted between November 2004 and March 2007 in Lagos and Port Harcourt, Nigeria. We enrolled 1644 HIV-antibody negative women at high risk of HIV acquisition. Study participants were randomized 1:1 to cellulose sulfate or placebo and asked to use gel plus a condom for each act of vaginal intercourse over one year of follow-up. The participants were evaluated monthly for HIV, gonorrhea and chlamydial infection, and for adverse events. RESULTS: The trial was stopped prematurely after the data safety monitoring board of a parallel trial concluded that cellulose sulfate might be increasing the risk of HIV. In contrast, we observed fewer infections in the active arm (10) than on placebo (13), a difference that was nonetheless not statistically significant (HR = 0.8, 95% CI 0.3-1.8; p = 0.56). Rates of gonorrhea and chlamydial infection were lower in the CS group but the difference was likewise not statistically significant (HR = 0.8, 95% CI 0.5-1.1; p = 0.19 for the combined STI outcome). Rates of adverse events were similar across study arms. No serious adverse events related to cellulose sulfate use were reported. CONCLUSIONS: Cellulose sulfate gel appeared to be safe in the evaluated study population but we found insufficient evidence that it prevented male-to-female vaginal transmission of HIV, gonorrhea or chlamydial infection. The early closure of the trial compromised the ability to draw definitive conclusions about the effectiveness of cellulose sulfate against HIV. TRIAL REGISTRATION: ClinicalTrials.gov NCT00120770

    Tolerance to ceftriaxone in Neisseria gonorrhoeae : rapid induction in WHO P reference strain and detection in clinical isolates

    No full text
    In addition to antimicrobial resistance, bacteria contain other mechanisms to survive antibiotic exposure such as tolerance, defined as the ability to slow metabolism by the extension of the lag phase without altering antimicrobial susceptibility. In a number of bacterial species, tolerance has been associated with treatment failure and infection chronicity and is found to precede and facilitate antimicrobial resistance. It is unknown if tolerance can be induced in Neisseria gonorrhoeae. In this study, we determined if tolerance to ceftriaxone (CRO) can be induced in N. gonorrhoeae and detected in clinical isolates. To induce tolerance, WHO P N. gonorrhoeae reference strain samples were grown under daily 3 h intermittent CRO exposure (10× the MIC), partitioned by overnight growth in GC broth. This cyclic exposure was performed for 7 consecutive days in sextuplicate, with two control cultures to which GC medium without antibiotics was added. To detect tolerance and assess CRO susceptibility, modified Tolerance Disc (TD) and Epsilometer tests were performed on isolates after each CRO exposure cycle. Additionally, this experiment was carried out on 18 clinical N. gonorrhoeae isolates. Tolerance was first detected after two CRO exposure cycles in five out of six samples. The phenotype differed per cycle with no clear pattern. No tolerance was found in control samples but was detected in 10 out of 18 clinical isolates. The present study is the first to demonstrate the induction of tolerance to CRO in N. gonorrhoeae through antibiotic exposure. In addition, tolerance to CRO was found in clinical samples

    Detection of asymptomatic Leishmania infection in blood donors at two blood banks in Ethiopia.

    No full text
    Visceral leishmaniasis (VL) is a disease caused by Leishmania parasites. While predominantly transmitted by sandflies, cases of VL transmitted through blood transfusion have been reported, particularly in immunocompromised recipients. Although Leishmania parasites have been found in blood donors in some VL endemic areas, this has never been studied in East-Africa, where HIV prevalence is relatively high. We established the prevalence of asymptomatic Leishmania infection and associated socio-demographic factors among blood donors presenting at two blood bank sites (Metema and Gondar) in northwest Ethiopia between June and December 2020. Metema is located in a VL-endemic area; Gondar has historically been considered VL non-endemic but as an outbreak of VL has occurred around Gondar, it was defined as previously VL non-endemic. Blood samples were tested by the rK39 rapid diagnostic test (RDT), rK39 ELISA, direct agglutination test (DAT) and qPCR targeting kinetoplast DNA (kDNA). Asymptomatic infection was defined as positive by any of these tests in a healthy person. A total of 426 voluntary blood donors were included. The median age was 22 years (IQR, 19-28 years); 59% were male and 81% resided in urban areas. Only one participant had a history of VL and three had a family history of VL. Asymptomatic infection was detected in 15.0% (n = 32/213) in Metema and 4.2% (n = 9/213) in Gondar. The rK39 ELISA was positive in 5.4% (n = 23/426), the rK39 RDT in 2.6% (11/426), PCR in 2.6% (11/420) and DAT in 0.5% (2/426). There were six individuals with two positive tests: one positive on rK39 RDT and PCR and five positive on rK39 RDT and ELISA. The prevalence of asymptomatic infection was higher in Metema (VL-endemic) and males but was not associated with age, a history of VL amongst family members or living in a rural area. Antibodies against Leishmania and parasite DNA was detected in a substantial number of blood donors. Future research should be directed at better defining the risk to recipients, including parasite viability studies and longitudinal studies amongst recipients

    Ciprofloxacin concentrations 1/1000th the MIC can select for antimicrobial resistance in N. gonorrhoeae : important implications for maximum residue limits in food

    No full text
    Background: Concentrations of fluoroquinolones up to 200-fold lower than the minimal inhibitory concentration (MIC) have been shown to be able to select for antimicrobial resistance in E. coli and Salmonella spp. (the minimum selection concentration—MSC). We hypothesized that the low concentrations of quinolones found in meat may play a role in the genesis of quinolone resistance in Neisseria gonorrhoeae. We aimed to (i) establish the ciprofloxacin MSC for N. gonorrhoeae and (ii) assess if, at the ecological level, the prevalence of gonococcal ciprofloxacin resistance is associated with the concentration of quinolones used in food animal production, which is an important determinant of long-term low-dose exposure to ciprofloxacin in humans. Methods: (i) To assess if subinhibitory ciprofloxacin concentrations could select for de novo generated resistant mutants, a susceptible WHO-P N. gonorrhoeae isolate was serially passaged at 1, 1:10, 1:100 and 1:1000 of the ciprofloxacin MIC of WHO-P (0.004 mg/L) on GC agar plates. (ii) Spearman’s correlation was used to assess the association between the prevalence of ciprofloxacin resistance in N. gonorrhoeae and quinolone use for animals and quinolone consumption by humans. Results: Ciprofloxacin concentrations as low as 0.004 ”g/L (1/1000 of the MIC of WHO-P) were able to select for ciprofloxacin resistance. The prevalence of ciprofloxacin resistance in N. gonorrhoeae was positively associated with quinolone use for food animals (ρ = 0.47; p = 0.004; N = 34). Conclusion: Further individual level research is required to assess if low doses of ciprofloxacin from ingested foodstuffs are able to select for ciprofloxacin resistance in bacteria colonizing humans and other species

    The discovery of oropharyngeal microbiota with inhibitory activity against pathogenic Neisseria gonorrhoeae and Neisseria meningitidis : an in vitro study of clinical isolates

    No full text
    With increasing incidence of pathogenic Neisseria infections coupled with emerging resistance to antimicrobials, alternative approaches to limit the spread are sought. We investigated the inhibitory effect of oropharyngeal microbiota on the growth of N. gonorrhoeae and N. meningitidis and the impact of the essential oil-based mouthwash Listerine Cool Mint(Âź) (Listerine). Oropharyngeal swabs from 64 men who have sex with men (n = 118) from a previous study (PReGo study) were analysed (ClinicalTrials.gov, NCT03881007). These included 64 baseline and 54 samples following three months of daily use of Listerine. Inhibition was confirmed by agar overlay assay, and inhibitory bacteria isolated using replica plating and identified using MALDI-TOF. The number of inhibitory isolates were compared before and after Listerine use. Thirty-one pharyngeal samples (26%) showed inhibitory activity against N. gonorrhoeae and/or N. meningitidis, and 62 inhibitory isolates were characterised. Fourteen species belonging to the genera Streptococci and Rothia were identified. More inhibitory isolates were observed following Listerine use compared to baseline, although this effect was not statistically significant (p = 0.073). This study isolated and identified inhibitory bacteria against pathogenic Neisseria spp. and established that daily Listerine use did not decrease their prevalence. These findings could provide a new approach for the prevention and treatment of pharyngeal Neisseria infections
    corecore