4 research outputs found

    Topical administration of a novel nitric oxide donor, linear polyethylenimine-nitric oxide/nucleophile adduct (DS1), selectively increases vaginal blood flow in anesthetized rats

    No full text
    The aim of the present study was to test the effects of a topical administration of a novel nitric oxide donor, linear polyethylenimine-nitric oxide/nucleophile adduct (DS1), on vaginal blood flow and hemodynamics in rats. Laser Doppler flowmetry was used to measure blood flow changes following topical application of DS1 (0.3 or 1.5 mg in 0.15 ml saline) into the vagina of anesthetized Wistar rats. In vivo hemodynamic parameters were measured with Millar-tip-catheter placed in the left ventricle. DS1 (1.5 mg) increased vaginal blood flow by 191+/-24, 226+/-22 and 166+/-23% of the baseline value (at 5, 15 and 30 min, respectively, after application) without affecting systemic blood pressure, heart rate and cardiac function. The increased vaginal blood flow following DS1 application returned to baseline between 45 and 60 min. Thus, topical application of nitric oxide donors such as DS1 may be useful for the treatment of female sexual dysfunction that develops due to an impairment of local blood flow supply to the vaginal tissue

    Anti-inflammatory effects of a novel, potent inhibitor of poly (ADP-ribose) polymerase

    No full text
    OBJECTIVE AND DESIGN: Oxygen- and nitrogen-derived free radicals and oxidants play an important role in the pathogenesis of various forms of inflammation. Recent work emphasizes the importance of oxidant-induced DNA strand breakage and activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) in the pathogenesis of various inflammatory diseases. We have recently demonstrated the efficacy of PJ34, a novel, potent phenanthridinone derivative PARP inhibitor, in rodent models of diabetic vascular dysfunction and stroke. Here we tested the efficacy of PARP inhibition in various models of local inflammation in rodents. MATERIALS AND METHODS: PJ34 (at doses of 0.03-30 mg/kg) was tested in rats and mice subjected to standard models of inflammation, with relevant parameters of inflammation measured using standard methods. RESULTS: PJ34 treatment (s.c, i.p. and i.v.) dose-dependently suppressed neutrophil infiltration and nitric oxide (but not KC and IL-1beta) production in peritonitis. In a model of systemic endotoxemia, PJ34 pretreatment significantly reduced plasma levels of TNF-alpha, IL-1beta and nitrite/nitrate (breakdown products of nitric oxide) production. PJ34 treatment (oral gavage) induced a significant suppression of the inflammatory response in dextran sulfate colitis, multiple low dose streptozotocin diabetes and cyclophosphamide-accelerated autoimmune diabetes in the non-obese diabetic mice, and reduced the degree of mononuclear cell infiltration into the iris in an endotoxin-induced uveitis model. Delaying the start of PJ34 administration in the colitis model conferred significant protective effects, while in the arthritis model the post-treatment paradigm lacked protective effects. CONCLUSIONS: PJ34 provides significant, dose-dependent, anti-inflammatory effects in a variety of local inflammation models. Some of its actions are maintained in the post-treatment regimen and/or after discontinuation of treatment. We conclude that PARP inhibition offers a powerful means for reducing the severity of various forms of local inflammatory responses
    corecore