6 research outputs found

    Use of Morpho-physiological Parameters and Biochemical Markers to Select Drought Tolerant Genotypes of Durum wheat

    Get PDF
    Nine durum wheat genotypes (Karim, Ourghi, Massa, Isly, Vitron, Sebou, Oum Rbia, Sarif, and Marzak) were grown in pots and evaluated for their phenolic content and peroxidases activity (POX), cell membrane stability (CMS) and Stomatal Resistance (SR). The genotypes Ourghi and Karim exhibited the highest amount of total phenolics (1374 µg.g-1 FW and 1303 µg.g-1 FW respectively) while Massa and Oum Rbia showed the lowest amounts (676 µg.g-1 FW and 761 µg.g-1 FW respectively) under severe stress regime. High performances Liquid Chromatography (HPLC) analysis revealed an important accumulation of hydroxycinnamic acid derivatives for the most accumulating genotypes. Under severe drought stress conditions, Ourghi revealed the highest peroxidase activity and Oum Rbia the lowest. A positive correlation was obtained between total phenolics and CMS. In another experiment hold in the hydroponic system under normal growing conditions, we revealed the superiority of genotype Karim in term of tillers, leaves and roots number, root thickness and dry matter accumulation and allocation to the roots. The present data provide useful information about whether the parameters used in this study are helpful in understanding drought tolerance mechanisms and the possibility to use them in selection programs under Mediterranean conditions.&nbsp

    Structural and Biochemical Changes in Salicylic-Acid-Treated Date Palm Roots Challenged with Fusarium oxysporum f. sp. albedinis

    Get PDF
    Histochemical and ultrastructural analyses were carried out to assess structural and biochemical changes in date palm roots pretreated with salicylic acid (SA) then inoculated with Fusarium oxysporum f. sp. albedinis (Foa). Flavonoids, induced proteins, and peroxidase activity were revealed in root tissues of SA-treated plants after challenge by Foa. These reactions were closely associated with plant resistance to Foa. Host reactions induced after inoculation of SA-treated plants with Foa included the plugging of intercellular spaces, the deposition of electron-dense materials at the sites of pathogen penetration, and several damages to fungal cells. On the other hand, untreated inoculated plants showed marked cell wall degradation and total cytoplasm disorganization, indicating the protective effects provided by salicylic acid in treated plants

    Identification and Genomic Characterization of Pathogenic Bacillus altitudinis from Common Pear Trees in Morocco

    No full text
    International audienceBacterial burn is one of the major diseases affecting pear trees worldwide, with serious impacts on producers and economy. In Morocco, several pear trees (Pyrus communis) have shown leaf burns since 2015. To characterize the causal agent of this disease, we isolated fourteen bacterial strains from different parts of symptomatic pear trees (leaves, shoots, fruits and flowers) that were tested in planta for their pathogenicity on Louise bonne and Williams cultivars. The results showed necrotic lesions with a significant severity range from 47.63 to 57.77% on leaves of the Louise bonne cultivar inoculated with isolate B10, while the other bacterial isolates did not induce any disease symptom. 16S rRNA gene sequencing did not allow robust taxonomic discrimination of the incriminated isolate. Thus, we conducted whole-genome sequencing (WGS) and phylogenetic analyzes based on gyrA, gyrB and cdaA gene sequences, indicating that this isolate belongs to the Bacillus altitudinis species. This taxonomic classification was further confirmed by the Average Nucleotide Identity (ANI) and the in silico DNA-DNA hybridization (isDDH) analyzes compared to sixty-five Bacillus spp. type strains. The genome was mined for genes encoding carbohydrate-active enzymes (CAZymes) known to play a role in the vegetal tissue degradation. 177 candidates with functions that may support the in planta phytopathogenicity results were identified. To the best of our knowledge, this is the first data reporting B. altitudinis as agent of leaf burn in P. communis in Morocco. Our dataset will improve our knowledge on spread and pathogenicity of B. altitudinis genotypes that appears as emergent phytopathogenic agent, unveiling virulence factors and their genomic location (i.e., within genomic islands or the accessory genome) to induce trees disease

    Urine E-cadherin: A Marker for Early Detection of Kidney Injury in Diabetic Patients

    No full text
    Diabetic nephropathy (DN) is the main reason for end-stage renal disease. Microalbuminuria as the non-invasive available diagnosis marker lacks specificity and gives high false positive rates. To identify and validate biomarkers for DN, we used in the present study urine samples from four patient groups: diabetes without nephropathy, diabetes with microalbuminuria, diabetes with macroalbuminuria and proteinuria without diabetes. For the longitudinal validation, we recruited 563 diabetic patients and collected 1363 urine samples with the clinical data during a follow-up of 6 years. Comparative urinary proteomics identified four proteins Apolipoprotein A-I (APOA1), Beta-2-microglobulin (B2M), E-cadherin (CDH1) and Lithostathine-1-alpha (REG1A), which differentiated with high statistical strength (p < 0.05) between DN patients and the other groups. Label-free mass spectrometric quantification of the candidates confirmed the discriminatory value of E-cadherin and Lithostathine-1-alpha (p < 0.05). Immunological validation highlighted E-cadherin as the only marker able to differentiate significantly between the different DN stages with an area under the curve (AUC) of 0.85 (95%-CI: [0.72, 0.97]). The analysis of the samples from the longitudinal study confirmed the prognostic value of E-cadherin, the critical increase in urinary E-cadherin level was measured 20 ± 12.5 months before the onset of microalbuminuria and correlated significantly (p < 0.05) with the glomerular filtration rate measured by estimated glomerular filtration rate (eGFR)

    Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings

    No full text
    The Bayoud, caused by Fusarium oxysporum f. sp. albedinis (Foa), is the most destructive disease of date palm (Phoenix dactylifera L) in Morocco and Algeria, with no effective control strategy yet available. In this work, two bacteria, Bacillus amyloliquefaciens strain Ag1 (Ag) and Burkholderia cepacia strain Cs5 (Cs), were examined for their potential to control this disease. Both bacterial strains inhibited both growth and sporulation of Foa. They released compounds into the culture medium, which resulted into cytological changes in Foa's mycelial structure. When Jihel-date palm plantlets, a susceptible cultivar, were induced with these bacteria, the size of the necrosis zone, which reflected the spreading of the pathogen, was reduced by more than 70%, as compared with uninduced controls. To further investigate the mechanisms of such disease reduction, phenolic compounds and peroxidase activity were assessed. One month after inoculation, date palm defense reactions against Foa were different depending on the bacterium used, B. cepacia led to higher accumulation of constitutive caffeoylshikimic acid isomers while B. amyloliquefaciens triggered the induction of new phenolic compounds identified as hydroxycinnamic acid derivatives. Peroxidase activity has also been stimulated significantly and varied with the bacterial strain used and with Foa inoculation. These results add to the promising field of investigation in controlling Bayoud disease.PRAD 11-05-Egide N°24172UL and AI (Tunisie-Maroc) 24/0
    corecore