49 research outputs found

    Approximate analytical solution of a nonlinear boundary value problem and its application in fluid mechanics,

    Get PDF
    Although the decomposition method and its modified form were used during the last two decades by many authors to investigate various scientific models, a little attention was devoted for their applications in the field of fluid mechanics. In this paper, the Adomian decomposition method (ADM) is implemented for solving the nonlinear partial differential equation (PDE) describing the peristaltic flow of a power-law fluid in a circular cylindrical tube under the effect of a magnetic field. The numerical solutions obtained in this paper show the effectiveness of Adomian's method over the perturbation technique

    Effect of the Velocity Second Slip Boundary Condition on the Peristaltic Flow of Nanofluids in an Asymmetric Channel: Exact Solution

    Get PDF
    The problem of peristaltic nanofluid flow in an asymmetric channel in the presence of the second-order slip boundary condition was investigated in this paper. To the best of the authors’ knowledge, this parameter was here incorporated for the first time in such field of a peristaltic flow. The system governing the current flow was found as a set of nonlinear partial differential equations in the stream function, pressure gradient, nanoparticle concentration, and temperature distribution. Therefore, this system has been successfully solved exactly via a very effective procedure. These exact solutions were then proved to reduce to well-known results in the absence of second slip which were published very recently in the literature. Effect of the second slip parameter on the present physical parameters was discussed through graphs and it was found that this type of slip is a very important one to predict the investigated physical model. Moreover, the variation of many physical parameters such as amplitudes of the lower and upper waves, phase difference on the temperature distribution, nanoparticle concentration, pressure rise, velocity, and pressure gradient were also discussed. Finally, the present results may be viewed as an optimal choice for their dependence on the exact solutions which are obtained due to the highly complex nonlinear system

    New Analytical and Numerical Solutions for Mixed Convection Boundary-Layer Nanofluid Flow along an Inclined Plate Embedded in a Porous Medium

    Get PDF
    Two different analytical and numerical methods have been applied to solve the system describing the mixed convection boundarylayer nanofluids flow along an inclined plate embedded in a porous medium, namely, homotopy perturbation method (HPM) and Chebyshev pseudospectral differentiation matrix (ChPDM), respectively. Further, ChPDM is used as a control method to check the accuracy of the results obtained by HPM. The analytical method is applied using a new way for the deformed equations, and the resulted solution was expressed in terms of a well-known entire error function. In addition, using only two terms of the homotopy series, the approximate analytical solution is compared with the numerical solution obtained by the accurate ChPDM approach. The results reveal that good agreements have been achieved between the two approaches for various values of the investigated physical parameters

    Re-Evaluating the Classical Falling Body Problem

    Get PDF
    This paper re-analyzes the falling body problem in three dimensions, taking into account the effect of the Earth’s rotation (ER). Accordingly, the analytic solution of the three-dimensional model is obtained. Since the ER is quite slow, the three coupled differential equations of motion are usually approximated by neglecting all high order terms. Furthermore, the theoretical aspects describing the nature of the falling point in the rotating frame and the original inertial frame are proved. The theoretical and numerical results are illustrated and discussed.The authors would like to thank the referees for their valuable comments and suggestions, which helped to improve the manuscript. Moreover, the first author thanks Prince Sattam bin Abdulaziz University and Deanship of Scientific Research at Prince Sattam bin Abdulaziz University for their continuous support and encouragement.info:eu-repo/semantics/publishedVersio

    Analytical Solutions for the Mathematical Model Describing the Formation of Liver Zones via Adomian’s Method

    Get PDF
    The formation of liver zones is modeled by a system of two integropartial differential equations. In this research, we introduce the mathematical formulation of these integro-partial differential equations obtained by Bass et al. in 1987. For better understanding of this mathematical formulation, we present a medical introduction for the liver in order to make the formulation as clear as possible. In applied mathematics, the Adomian decomposition method is an effective procedure to obtain analytic and approximate solutions for different types of operator equations. This Adomian decomposition method is used in this work to solve the proposed model analytically. The stationary solutions (as time tends to infinity) are also obtained through it, which are in full agreement with those obtained by Bass et al. in 1987

    Exact Solution of Ambartsumian Delay Differential Equation and Comparison with Daftardar-Gejji and Jafari Approximate Method

    No full text
    The Ambartsumian equation, a linear differential equation involving a proportional delay term, is used in the theory of surface brightness in the Milky Way. In this paper, the Laplace-transform was first applied to this equation, and then the decomposition method was implemented to establish a closed-form solution. The present closed-form solution is reported for the first time for the Ambartsumian equation. Numerically, the calculations have demonstrated a rapid rate of convergence of the obtained approximate solutions, which are displayed in several graphs. It has also been shown that only a few terms of the new approximate solution were sufficient to achieve extremely accurate numerical results. Furthermore, comparisons of the present results with the existing methods in the literature were introduced

    Solution of Ambartsumian Delay Differential Equation in the q-Calculus

    Get PDF
    The Ambartsumian equation in view of the q-calculus is investigated in this paper. This equation is of practical interest in the theory of surface brightness in the Milky Way. Two approaches are applied to obtain the closed form solution. The first approach implements a direct series assumption while the second approach is based on the Adomian decomposition method. The two approaches lead to a unique power series of arbitrary powers. Furthermore, the convergence of the obtained series is theoretically proven. In addition, we showed that the present solution reduces to the results in the relevant literature when the quantum calculus parameter tends to 1

    A New Approach for a Class of the Blasius Problem via a Transformation and Adomian’s Method

    Get PDF
    The main feature of the boundary layer flow problems is the inclusion of the boundary conditions at infinity. Such boundary conditions cause difficulties for any of the series methods when applied to solve such problems. To the best of the authors’ knowledge, two procedures were used extensively in the past two decades to deal with the boundary conditions at infinity, either the Padé approximation or the direct numerical codes. However, an intensive work is needed to perform the calculations using the Padé technique. Regarding this point, a new idea is proposed in this paper. The idea is based on transforming the unbounded domain into a bounded one by the help of a transformation. Accordingly, the original differential equation is transformed into a singular differential equation with classical boundary conditions. The current approach is applied to solve a class of the Blasius problem and a special class of the Falkner-Skan problem via an improved version of Adomian’s method (Ebaid, 2011). In addition, the numerical results obtained by using the proposed technique are compared with the other published solutions, where good agreement has been achieved. The main characteristic of the present approach is the avoidance of the Padé approximation to deal with the infinity boundary conditions
    corecore