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Although the decomposition method and its modified form were used during the last two decades
by many authors to investigate various scientific models, a little attention was devoted for their ap-
plications in the field of fluid mechanics. In this paper, the Adomian decomposition method (ADM)
is implemented for solving the nonlinear partial differential equation (PDE) describing the peristaltic
flow of a power-law fluid in a circular cylindrical tube under the effect of a magnetic field. The
numerical solutions obtained in this paper show the effectiveness of Adomian’s method over the
perturbation technique.
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1. Introduction

The Adomian decomposition method (ADM) in ap-
plied mathematics is an effective procedure to obtain
analytic and approximate solutions for different types
of operator equations [1 – 17]. It is based on the search
for a solution in the form of a series. In this paper,
we consider the following non-dimensional boundary
value problem (BVP):

1
r

∂

∂ r

[
r
(
− ∂w

∂ r

)n]
=− dp

dz
−M2w (1)

with the boundary conditions

∂w
∂ r

= 0 at r = 0,

w =−1 at r = h(z).
(2)

The nonlinear partial differential equation (1) with the
boundary conditions (2) often occurs in the fluid flow
problems of a power law fluid in a circular cylindrical
tube when a travelling wave is imposed to the bound-
ary under the assumptions of long wave length and
low Reynolds number with an external force (magnetic
field) [18]. The unknown function w(r,z) represents the
axial velocity component of the fluid particles and n is
the index of the power law fluid. dp

dz is the pressure gra-
dient term where p = p(z). The second term in the right
hand side represents the external force (magnetic field)
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acting on the fluid. M is the non-dimensional param-
eter of the magnetic field (Hartmann number). In [18]
a regular perturbation series in terms of the dimension-
less Hartmann number M has been used to obtain an
analytic solution assuming that M is a small param-
eter. In fact, we can use ADM to obtain the analytic
solution without any such restrictions on the Hartmann
number M. So it is our objective in this paper to show
how to apply Adomian’s method to obtain the analytic
solution for the nonlinear PDE (1) with the boundary
conditions (2) without any restrictions on M.

2. Direct Approach

In this section, we give a direct approach to solve (1)
with the boundary conditions (2). Firstly, we rewrite
(1) in the operator form

Lrw =− dp
dz
−M2w, (3)

where the differential operator Lr (nonlinear operator)
is defined in the form

Lr[.] =
1
r

∂

∂ r

[
r
(
− ∂

∂ r
[.]
)n]

. (4)

The proposed approach depends mainly on the Ado-
mian decomposition method but with a new definition
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for the inverse operator L−1
r :

L−1
r [.] =−

∫ r

h

n

√
r−1

∫ r

0
r[.]dr dr. (5)

Applying this inverse operator to the left-hand side of
(1), we obtain

L−1
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∂ r
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)n])
=−
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0
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∂

∂ r

[
r
(
− ∂w
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dr dr

=−
∫ r

h

n

√
r−1
[
r
(
− ∂w

∂ r

)n]
dr

=
∫ r

h

∂w
∂ r

dr

= w(r,z)−w(h,z)
= w(r,z)+1,

(6)

where the two boundary conditions (2) are used di-
rectly. Now, operating with L−1

r on (1), it then follows:

w(r,z) =−1+L−1
r

(
− dp

dz
−M2w

)
. (7)

Notice that L−1
r is a nonlinear operator. Therefore

w(r,z) =−1−
∫ r

h

n

√
−1

2
dp
dz

r−M2r−1
∫ r

0
rw dr dr

=−1−
∫ r

h

∞

∑
m=0

Am. (8)

Where Am are Adomian polynomials for the nonlinear
term,

f (w) = n

√
−1

2
dp
dz

r−M2r−1
∫ r

0
rw dr,

and can be found from the formula [1]:

Am =
1

m!
dm

dλ m

[
f

(
∞

∑
i=0

λ
iwi

)]
λ=0

, m≥ 0. (9)

The standard Adomian’s method defines the solution
w(r,z) by the series w = ∑

∞
m=0 wm, consequently (8)

can be written as

∞

∑
m=0

wm =−1−
∫ r

h

∞

∑
m=0

Am dr, (10)

hence, the solution w(r,z) can be computed by using
the recurrence relation

w0 =−1,

wm =−
∫ r

h
Am dr, m≥ 1.

(11)

To find w1, we use formula (9) to form A0 as

A0 = n

√
−1

2
dp
dz

r−M2r−1
∫ r

0
rw0 dr

=
(1

2

) 1
n
(
− dp

dz
+M2

) 1
n
r

1
n .

(12)

Therefore,

w1 =
n

n+1

(1
2

) 1
n
(
− dp

dz
+M2

) 1
n
(

h
1
n +1− r

1
n +1
)
.

(13)

Using formula (9) again to generate A1, we get

A1 =−M2

n

(
− 1

2
dp
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∫ r

0
rw0 dr

) 1
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·
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.

(14)

Consequently,

w2 =
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·
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2
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2
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]
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(15)

Using the first three components w0, w1, and w2, then
the series solution is given by

w(r,z) =−1+
n
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) 1
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·
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n +2−nr

2
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]
+ . . . .

(16)
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Of course, it is possible to calculate more compo-
nents in the decomposition series (16) to enhance the
approximation. Also, it is important to note that the se-
ries solution given by (16) is obtained by ADM without
any restrictions on the parameter M, consequently the
range of applicability of M becomes more wider than
in perturbation in which 0 < M < 1. To make this point
as clear as possible, we discuss in Section 5 the effec-
tiveness of ADM in finding numerical solutions with
good accuracy for (1) when n = 1, in which the exact
solution is known and M ≥ 1.

3. Exact Solution at M = 0

In this case, the exact solution can be derived from
(16) as

w =−1− n
n+1

(
− 1

2
dp
dz

) 1
n
(

h
1
n +1− r

1
n +1
)
, (17)

which is the exact solution of (1) with the boundary
conditions (2) in the absence of external force, i.e.,
M = 0.

4. Exact Solution at n = 1 (Newtonian Fluid),
M 6= 0

For n = 1, (1) with the boundary conditions (2) has
the exact solution

w(r,z) =−1+
(

1− 1
M2

dp
dz

)[
1− I0(Mr)

I0(Mh)

]
. (18)

Where I0(Mr) is the modified Bessel function of first
kind. Setting n = 1 in (16), we obtain the series solution
as

w = −1+
(
− dp

dz
+M2

)[h2

4
− 3M2h4

64

+
(
− 1

4
+

M2h2

16

)
r2− M2

64
r4

]
+ . . . .

(19)

In fact, this series solution represents the first few terms
of the Taylor expansion for the exact solution given
by (18). Furthermore, it is obtained without any restric-
tions on M, so the range of applicability for M is more
wider than in the perturbation solution, this point is in-
dicated numerically in the next section.

5. Numerical Results and Discussion

In order to verify numerically whether the Ado-
mian’s methodology leads to accurate solutions, nu-
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Fig. 1. Comparison between Adomian’s approximate solu-
tions and the exact one at n = 1, h = 1, dp/dz =−1, M = 1.
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Fig. 2. Comparison between Adomian’s approximate solu-
tions and the exact one at n = 1, h = 1, dp/dz = −1,
M = 1.5.
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Fig. 3. Comparison between Adomian’s approximate solu-
tions and the exact one at n = 1, h = 1, dp/dz =−1, M = 2.
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merical calculations have been carried out using the
software package Mathematica5. Using the series so-
lution given by (19), we plot the approximate solu-
tions obtained by Adomian’s method with the exact
solution given by (18) at h = 1, dp

dz = −1 and for
M = 1, 1.5, 2 in Figures 1 – 3, respectively. The nu-
merical results in all the figures show that a good ap-
proximation is achieved using small values of m-terms
of the decomposition series solution, Φm = ∑

m−1
i=0 wi.

It is also seen from these figures that as M increases,
more terms of the decomposition series are needed to
achieve a good approximation. Finally, we observe that
the solution obtained by ADM is already valid for any

M, while in perturbation it is valid only for 0 < M < 1,
of course it is one of the main advantages of Adomian’s
method.

6. Conclusion

In this paper, a relatively new analytical technique,
the Adomian decomposition method, is implemented
for solving a nonlinear PDE of special interest in fluid
mechanics. The solution obtained in this paper is found
to be valid for any Hartmann number M. Of course
it is one of the main advantages of the decomposition
method over the other techniques.
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