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Abstract: This paper re-analyzes the falling body problem in three dimensions, taking into account
the effect of the Earth’s rotation (ER). Accordingly, the analytic solution of the three-dimensional
model is obtained. Since the ER is quite slow, the three coupled differential equations of motion
are usually approximated by neglecting all high order terms. Furthermore, the theoretical aspects
describing the nature of the falling point in the rotating frame and the original inertial frame are
proved. The theoretical and numerical results are illustrated and discussed.
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1. Introduction

In recent years, the classical falling body problem (FBP) and the two-dimensional projectile
motion [1–11] have been re-evaluated. The FBP has been modeled as the vertical motion of a particle
near to the Earth’s gravitational field [12–14]; that is, as a problem formulated in one dimension. Hence,
the results obtained in [12–14] are only valid in a fixed non-rotating frame. Thus, the effect of Earth’s
rotation (ER) on the FBP and on the projectile motion, was not taken into account. This paper addresses
such effect of the ER by analyzing the three-dimensional model of a falling body under the action of
the Earth’s gravitational field.

For a clear description of the problem, let us suppose that~r = (x(t), y(t), z(t)) is the vector of Q
near the Earth surface, relative to the surface point P; see Figure 1. The governing equations are given
by [15,16]:

x′′(t) = (2ω cosλ) y′(t) + ω2 (x(t) cos λ + (R + z(t)) sin λ) cos λ, (1)

y′′(t) = − (2ω cosλ) x′(t)− (2ω sinλ) z′(t) + ω2y(t), (2)

z′′(t) = −g + (2ω sinλ) y′(t) + ω2 (x(t) cos λ + (R + z(t)) sin λ) sin λ, (3)

where g represents the acceleration due to gravity, ω denotes the Earth’s angular velocity, λ ∈ [0, π] is
the colatitude, and R stands for the Earth’s radius. Here, the x-, y-, and z- directions points to south,
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east, and up, respectively. For analysing the effects of the ER on the FBP we assume that a particle
is released from rest at the point Q = (x0, y0, z0) under the Earth’s gravitational field. Accordingly,
the initial conditions (ICs) are defined as

Figure 1. The inertial/local frames are (x, y, z) and (X, Y, Z), respectively. The x−, y−, and z−
directions point to the south, east, and up (away from the Earth’s surface).

x(0) = x0, y(0) = y0, z(0) = z0,

x′(0) = 0, y′(0) = 0, z′(0) = 0.
(4)

The transformation between the two systems of coordinates (x, y, z) and (X, Y, Z) in Figure 1 is
governed by [16]:

X = x cos λ cos φ− y sin φ + (R + z) sin λ cos φ, (5)

Y = x cos λ sin φ + y cos φ + (R + z) sin λ sin φ, (6)

Z = −x sin λ + (R + z) cos λ, (7)

where λ and φ are the colatitude and longitude of the surface point P, respectively, and R is the Earth’s
radius as mentioned above. However, to include the ER effect, we need to set φ = ωt in Equations
(5)–(7). Therefore, the transformation between the frames (x, y, z) and (X, Y, Z) after a time t is given
by [16]:

X = x cos λ cos ωt− y sin ωt + (R + z) sin λ cos ωt, (8)

Y = x cos λ sin ωt + y cos ωt + (R + z) sin λ sin ωt, (9)

Z = −x sin λ + (R + z) cos λ. (10)

In the literature [15,16], Model (1)–(4) has been solved for a special case, namely for x0 = y0 = 0,
where all terms of order superior to ω2 are neglected. The objective of this paper is to re-address the
approach adopted in [15,16] for solving Model (1)–(4) when x0 6= 0 and y0 6= 0. As one should expect,
in the follow-up, it will be shown that the current solutions reduce to the previous ones [15,16] when
x0 and y0 vanish. In addition, several Lemmas are proven for the geometrical properties of the falling
point in the two frames. Finally, the theoretical results will be illustrated through several numerical
examples.
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2. The Classical Approximate Solution

The ER is quite slow [15,16], and we find the value ω = 7.27× 10−5 s−1. From Equation (1),
the biggest term ω2R sin λ cos λ reaches its maximum value 0.016 when λ = π/4. Also, from
Equation (3), it is noted that the maximum value of the product ω2R sin2 λ is approximately 0.03
when λ = π/2. At other values of λ, these products are too small, and hence, the present analysis
may still be effective, even for all planets such that their realistic data satisfy ω2R � 1. In addition,
if ω2R approaches one, the terms of order ω2 and maybe other higher orders should be considered.
Hence, in the classical perspective, it is sufficient, in the present paper, to work up to the first order in
ω. Accordingly, all terms of order ω2 are ignored. At this level of accuracy, as ω2 → 0, the equations of
Motion (1)–(3) reduce to

x′′(t) = (2ω cosλ) y′(t), (11)

y′′(t) = − (2ω cosλ) x′(t)− (2ω sinλ) z′(t), (12)

z′′(t) = −g + (2ω sinλ) y′(t), (13)

Integrating Equations (11) and (13) once with respect to t and implementing the IC (4), we obtain

x′(t) = (2ω cos λ) (y(t)− y0) , (14)

z′(t) = −gt + (2ω sin λ) (y(t)− y0) . (15)

Inserting Equations (14) and (15) into (12), we have

y′′(t) = −
(

4ω2cos2λ
)
(y(t)− y0) + (2ωg sinλ) t−

(
4ω2sin2λ

)
(y(t)− y0) ,

= (2ωg sinλ) t− 4ω2 (y(t)− y0) . (16)

Neglecting the term of order ω2 in (16), yields

y′′(t) = (2ωg sinλ) t. (17)

Integrating Equation (17) twice with respect to t in view of the IC (4), we obtain

y(t) = y0 +

(
1
3

ωg sinλ

)
t3 + O(ω2). (18)

Substituting Equation (18) into (14) and (15) and solving the resulting differential equations, we
obtain x(t) and z(t):

x(t) = x0 + O(ω2), (19)

z(t) = z0 −
1
2

gt2 + O(ω2), (20)

where the terms of order ω2 were ignored and the ICs (4) were implemented. Clearly, when x0 = 0,
y0 = 0, we recover the solutions in the literature [15-16]. It is observed from Equation (18) that the
factor (ωg sinλ) is positive ∀λ ∈ (0, π). Accordingly, the particle is drifting away towards the east.
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3. Re-analysis of the FBP

Assume that the falling body, released from Q, hits the xy-plane at a point G; see Figure 2. Then,
the time T required for the body to hit the xy-plane is obtained from Equation (20) as

T =

√
2z0

g
. (21)

Figure 2. The particle, at rest, is released from Q in the local Cartesian (x, y, z) frame and hits the xy-
plane at a point G. The angle between PG and the x-axis is denoted by δ.

The Cartesian coordinates (xG, yG, zG) of the point G in the local frame (x, y, z) are given from
Equations (18)–(20) by

xG = x0, yG = y0 +

(
1
3

ωg sinλ

)
T3, zG = 0, (22)

where yG is the total eastward displacement. Let us now suppose that the point G is at a distance ρ

from the surface point P and that the angle between the vector PG and the x-axis is denoted by δ. Then,
the polar coordinates (ρ, δ) of G are

ρ =
√

x2
G + y2

G =

√
x2

0 +

[
y0 +

(
1
3

ωg sinλ

)
T3
]2

, (23)

δ = tan−1
(

yG

xG

)
= tan−1

(
3y0 + (ωg sinλ) T3

3x0

)
, x0 6= 0. (24)

In general, the point G does not lie on the Earth’s surface when ρ 6= 0 and, therefore, G is slightly
above the ground in such case. It is noted from Equation (23) that ρ 6= 0 if, at least, one of the three
quantities x0, y0 or sin λ is non-zero. This issue and some other properties of the point G are discussed
by the following lemmas.

Lemma 1. If S denotes to Earth’s surface, then G 6∈ S if one of the following conditions is satisfied

1. x0 = 0, y0 = 0, λ ∈ (0, π),
2. x0 = 0, y0 6= 0, λ ∈ [0, π],
3. x0 6= 0, y0 = 0, λ ∈ [0, π],
4. x0 6= 0, y0 6= 0, λ ∈ [0, π].
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Proof. It is sufficient to prove that the distance OG (from the center of Earth to the point G) is greater
than the Earth’s radius R (i.e., OG > R). From the geometry of the problem, the triangle4OPG is a
right angled triangle at P. Therefore, the distance OG is given by

OG =
√

R2 + ρ2,

= R

√
1 +

( ρ

R

)2
,

= R
√

1 + ε2, where ε =
ρ

R
. (25)

From Equation (23), ε is obtained as

ε =
ρ

R
=

√( x0

R

)2
+

(
y0

R
+

ωgT3sinλ

3R

)2

. (26)

It is clear from Equation (25) that OG > R, i.e., G 6∈ S, when ε 6= 0. At x0 = y0 = 0, we have from

Equation (26) that ε = ωgT3sinλ
3R 6= 0 for λ ∈ (0, π). This proves the first case.

When x0 = 0 and y0 6= 0, we find that ε = y0
R + ωgT3sinλ

3R 6= 0 for λ ∈ [0, π], which proves the
second case. The rest of the cases can also be proved following an identical procedure.

Lemma 2. If G belongs to the Earth’s surface, where x0 = 0, y0 = 0, and λ ∈ {0, π}, then G is located at

1. The North pole of Earth if λ = 0,
2. The South pole of Earth if λ = π.

Proof. If we set x0 = 0, y0 = 0 and λ = 0 or π in Equation (23), then we obtain ρ = 0, which implies
that ε = 0. Hence, Equation (25) leads to OG=R and, thus, G ∈ S. To specify whether G is the North
or the South pole of Earth, let us calculate the Cartesian coordinates (XG, YG, ZG) of G in the inertial
frame (X, Y, Z). At t = T, we have from Equations (8)–(10) that

XG = xG cos λ cos ωT − yG sin ωT + (R + zG) sin λ cos ωT, (27)

YG = xG cos λ sin ωT + yG cos ωT + (R + zG) sin λ sin ωT, (28)

ZG = −xG sin λ + (R + zG) cos λ. (29)

Substituting x0 = y0 = 0 into Equation (22), yields

xG = 0, yG =

(
1
3

ωg sinλ

)
T3, zG = 0, (30)

Inserting Equation (30) into (27)–(29), we have

XG = −
(

1
3

ωg sinλ

)
T3 sin ωT + R sin λ cos ωT, (31)

YG =

(
1
3

ωg sinλ

)
T3 cos ωT + R sin λ sin ωT, (32)

ZG = R cos λ. (33)

At λ = 0, we obtain
XG = 0, YG = 0, ZG = R, (34)
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that are the Cartesian coordinates of the North pole in the frame (X, Y, Z). Also, we have from
Equations (31)–(33) at λ = π that

XG = 0, YG = 0, ZG = −R, (35)

which are equivalent to the Cartesian coordinates of the South pole.

4. Results and Discussion

This section presents several numerical examples illustrating the application of the previous
models. Furthermore, the two Lemmas presented previously will be validated during the discussion.

Table 1 lists the values of the falling time T given by Equation (21). Moreover, the Cartesian
coordinates of Equation (22) of the falling point G in the frame (x, y, z) are calculated at ten different
cases of the colatitude λ and the release point Q = (x0, y0, z0). Table 2 gives the corresponding polar
coordinates (ρ, δ) of G and the distance OG for the ten cases considered in Table 1.

In the cases 1 and 2 of Table 1, we consider x0 = y0 = 0, λ = 0 and π, respectively. The results
of such two cases show that G = (0, 0, 0), which represents the origin of the local frame (x, y, z).
The corresponding value of ρ is zero, as shown in Table 2, meaning that G ∈ S (i.e., G lies on the Earth’s
surface), which follows Lemma 2.

Cases 3-10 occur when at least one of the values x0 or y0 is non-zero. We have that λ 6∈ {0, π},
indicating that the Cartesian coordinates of G have two zeros at most, as shown in Table 1, therefore,
we get ρ 6= 0 for the cases 3-10 of Table 2. Consequently, we have G 6∈ S, as proved by Lemma 1. In
addition, the first two cases in Table 2 show that the distance OG is equal to the Earth’s radius (hence,
G ∈ S) while the rest of the cases confirms that OG is greater than the Earth’s radius (thus, G 6∈ S),
which agrees with the results of Lemma 1.

In the follow-up, it is assumed that z0 6= 0 in all figures, because when z0 = 0 we have from Equation
(21) that T = 0, which is meaningless. Figure 3 displays the variation of ρ versus the colatitude λ in the
interval [0, π] at several release points Q = (x0, y0, z0), where x0 = y0 = 0. This figure shows that the
distance ρ vanishes at λ = 0 and λ = π, but we have ρ 6= 0 for λ ∈ (0, π). In Figures 4–6, ρ is depicted
against λ at three additional cases as follows. In Figures 4–6, we consider (i) x0 = 0 and y0 6= 0, (ii) x0 6= 0
and y0 = 0, and (iii) x0 6= 0 and y0 6= 0, respectively. From Figures 4–6 It is observed that ρ does not
vanish for any value of λ ∈ [0, π]. Hence, from Equation (26), we find that ε 6= 0, and therefore, Equation
(25) leads to OG > R. This is in full agreement with the preceding Lemmas. The calculations introduced
in Tables 1 and 2, by implementing realistic data for the angular velocity and the acceleration due to
gravity of Earth, are just to confirm and support the obtained theoretical Lemmas. The present results
are also applicable for other planets or space bodies such that ω2R� 1. Moreover, it can be generalized,
taking into account a resisting medium of valuable density [17].

Figure 3. Variation of ρ versus the colatitude λ at different Q = (x0, y0, z0) when x0 = 0, y0 = 0, and z0 6= 0.
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Table 1. The values of the falling time (T) [s] and the Cartesian coordinates of the falling point G in the frame (x, y, z) at various values of the colatitude (λ) [Radian]
and the release point Q.

Cartesian Coordinates Cartesian Coordinates
Colatitude (λ) of the Release Point Q Falling Time (T) of G

Case [Radian] x0 y0 z0 [s] xG yG zG
[km] [km] [km] [km] [km] [km]

1 0 0 0 10 45.1754 0 0 0
2 π 0 0 10 45.1754 0 0 0
3 π/4 0 0 10 45.1754 0 0.015487 0
4 π/4 10 0 10 45.1754 10 0.015487 0
5 π/4 0 10 10 45.1754 0 10.015500 0
6 π/4 10 10 10 45.1754 10 10.015500 0
7 π/6 20 20 20 63.8877 20 20.030973 0
8 π/6 30 30 30 78.2461 30 30.056902 0
9 π/6 40 40 40 90.3508 40 40.087607 0
10 π/6 50 50 50 101.015 50 50.122434 0
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Table 2. The polar coordinates (ρ, δ) of G and the distance OG from the center of Earth to the falling point G.

Case The Distance (ρ) The Angle (δ) The Distance OG Description of G[km] [Radian] [km]

1 0 Not available 6.37800000000 G ∈ S
2 0 Not available 6.37800000000 G ∈ S
3 0.015487 1.570796 6.37800000002 G /∈ S
4 10.000000 0.001549 6.37800783946 G /∈ S
5 10.015500 1.570796 6.37800786374 G /∈ S
6 14.153091 0.786172 6.37801570318 G /∈ S
7 28.306181 0.786172 6.37806281248 G /∈ S
8 42.466662 0.786346 6.37814137640 G /∈ S
9 56.630524 0.786492 6.37825140742 G /∈ S
10 70.797305 0.786621 6.37839292129 G /∈ S

Figure 4. Variation of ρ versus the colatitude λ at different Q = (x0, y0, z0) when x0 = 0, y0 6= 0, and z0 6= 0.

Figure 5. Variation of ρ versus the colatitude λ at different Q = (x0, y0, z0) when x0 6= 0, y0 = 0, and z0 6= 0.
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Figure 6. Variation of ρ versus the colatitude λ at different Q = (x0, y0, z0) when x0 6= 0, y0 6= 0, and z0 6= 0.

5. Conclusions

In this paper, the three dimensional model of the FBP near to the Earth’s surface was analyzed,
taking into account the ER. The analytic solutions of the three coupled equations of motion were
obtained when higher orders terms of the angular velocity of Earth are neglected. The properties of the
falling point in the rotating frame and the original inertial frame were given by means of two Lemmas.
The conditions at which the falling point belongs to the Earth’s surface were theoretically discussed
and then validated. Furthermore, the effects of the colatitude λ and the Cartesian coordinates of the
release point Q = (x0, y0, z0) on the final location of the falling point G = (xG, yG, zG) were discussed
in detail. It may be helpful to refer to the limitations of the present study, which requires that ω2R� 1.
For other planets in which ω2R is very close to one, the terms of order ω2 and maybe other higher
orders should be considered. In addition, if ω2R ≥ 1, then all terms of ω should be taken into account,
this deserves future consideration in a separate paper.
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