8 research outputs found

    The Role of Knowledge Control and Knowledge Asymmetry in Trusting and Collaborating with AI-Teammates

    Get PDF
    There is an extensive literature that facilitates our understanding of how new information technologies are adopted and accepted. However, there is little empirical work that studies how innovative technologies such as Artificial Intelligence (AI) agents can be team-players with humans in the workplace. Using Actor-Network Theory, this research-in-progress work proposes a new conceptual model that aims to aid our understanding of how human perceptions regarding the asymmetry they perceive between their knowledge and that of their AI teammates and their ability to retain control over the knowledge they share with AI teammates on their level of trust in AI teammates and their willingness to collaborate with them. A 2X2 scenario-based survey study will be conducted and structural equation modeling will be used to empirically validate this model. Potential contributions to theory and practice are discussed

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    A Utilization-based Genetic Algorithm for Solving the University Timetabling Problem (UGA)

    No full text
    Building university timetables is a complex process that considers varying types of constraints and objectives from one institution to another. The problem solved in this paper is a real one featuring a number of hard and soft constraints that are not very conventional. The pursued objective is also novel and considers maximizing resource utilization. This paper introduces a genetic algorithm that uses some heuristics to generate an initial population of feasible good quality timetables. The algorithm uses a simple weighted sum formula to respect professors’ preferences and handle conflicts. In order to reduce waste, a crossover type focusing on the utilization rates of learning spaces is introduced. A targeted mutation operator that uses a local search heuristic is also employed. The algorithm applies a composite fitness function that considers space utilization, gaps between events and a maximum number of lectures per day. A large dataset with real data from the Faculty of Commerce, Alexandria University in Egypt was used to test the contributed algorithm. The algorithm was also tested against two difficult benchmark problems from the literature. Testing proved that the developed algorithm is an effective tool for managing timetables and resources in universities. It performed remarkedly well on the large datasets of the two benchmark problems and it also respected more constraints than those stated in the initial problem statement of the two benchmark datasets

    Understanding Trust in Online Reviews - Research in Progress

    Get PDF
    During the last decades, the emergence of social media platforms has shaped the way people make decisions and search for information. These platforms have made it easy for individuals to write reviews and find information about any product/service anytime anywhere. Since consumers in these online environments might share their experiences without knowing each other, readers cannot verify whether reviewers are telling the truth or what motivated them to write such comments, so trusting these reviews is difficult and complex. Therefore, the objective of this work-in-progress research is to conceptualize online review trust and propose a model of online review trust antecedents. This work reviews related literature about trust and online reviews through the lens of the uncertainty reduction theory (URT) and outlines a survey- design approach to empirically validate the proposed model using structural equation modeling. Finally, anticipated contributions are discussed

    An information visibility-based university timetabling for efficient use of learning spaces (IVUT)

    Get PDF
    Academic institutions have limited resources that need judicious management. Building university timetables is a complex process that considers a big number of resources. Sometimes, allocating events takes place without seeing the full picture of the available resources. This leads to inefficiencies in utilization, especially with the absence of reevaluation techniques for timetables. Spaces could be underutilized or over-utilized but kept obscure due to lack of timely information. Providing updated information about spaces occupancy and utilization is important to construct resilient and adaptive timetables. Information visibility triggers re-scheduling and reallocation decisions. This paper introduces a new approach to construct resilient university timetables using genetic algorithms and data capturing technologies. The contributed approach adds a new dimension to solving the NP-hard timetabling and space allocation problems. It enables handling dynamic attendance patterns. By conducting periodical timetable assessments, appropriate spaces can be reallocated to suit the number of attendees in each event. This helps avoiding chaotic consequences resulting from space over-occupation as well as preventing the inability to use a space under the impression that is fully utilized. The developed solution relies on the use of RFID technology to enable information visibility. A case study was conducted at the Faculty of Commerce, Alexandria University, and the results are presented. Compared to current practices, the new concept proves to be an effective tool for managing timetables and resources in universities

    A Utilization-based Genetic Algorithm for Solving the University Timetabling Problem (UGA)

    Get PDF
    Building university timetables is a complex process that considers varying types of constraints and objectives from one institution to another. The problem solved in this paper is a real one featuring a number of hard and soft constraints that are not very conventional. The pursued objective is also novel and considers maximizing resource utilization. This paper introduces a genetic algorithm that uses some heuristics to generate an initial population of feasible good quality timetables. The algorithm uses a simple weighted sum formula to respect professors’ preferences and handle conflicts. In order to reduce waste, a crossover type focusing on the utilization rates of learning spaces is introduced. A targeted mutation operator that uses a local search heuristic is also employed. The algorithm applies a composite fitness function that considers space utilization, gaps between events and a maximum number of lectures per day. A large dataset with real data from the Faculty of Commerce, Alexandria University in Egypt was used to test the contributed algorithm. The algorithm was also tested against two difficult benchmark problems from the literature. Testing proved that the developed algorithm is an effective tool for managing timetables and resources in universities. It performed remarkedly well on the large datasets of the two benchmark problems and it also respected more constraints than those stated in the initial problem statement of the two benchmark datasets

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    Background: Pancreatic surgery remains associated with high morbidity rates. Although postoperative mortality appears to have improved with specialization, the outcomes reported in the literature reflect the activity of highly specialized centres. The aim of this study was to evaluate the outcomes following pancreatic surgery worldwide.Methods: This was an international, prospective, multicentre, cross-sectional snapshot study of consecutive patients undergoing pancreatic operations worldwide in a 3-month interval in 2021. The primary outcome was postoperative mortality within 90 days of surgery. Multivariable logistic regression was used to explore relationships with Human Development Index (HDI) and other parameters.Results: A total of 4223 patients from 67 countries were analysed. A complication of any severity was detected in 68.7 percent of patients (2901 of 4223). Major complication rates (Clavien-Dindo grade at least IIIa) were 24, 18, and 27 percent, and mortality rates were 10, 5, and 5 per cent in low-to-middle-, high-, and very high-HDI countries respectively. The 90-day postoperative mortality rate was 5.4 per cent (229 of 4223) overall, but was significantly higher in the low-to-middle-HDI group (adjusted OR 2.88, 95 per cent c.i. 1.80 to 4.48). The overall failure-to-rescue rate was 21 percent; however, it was 41 per cent in low-to-middle-compared with 19 per cent in very high-HDI countries.Conclusion: Excess mortality in low-to-middle-HDI countries could be attributable to failure to rescue of patients from severe complications. The authors call for a collaborative response from international and regional associations of pancreatic surgeons to address management related to death from postoperative complications to tackle the global disparities in the outcomes of pancreatic surgery (NCT04652271; ISRCTN95140761)

    Characteristics and outcomes of COVID-19 patients admitted to hospital with and without respiratory symptoms

    No full text
    Background: COVID-19 is primarily known as a respiratory illness; however, many patients present to hospital without respiratory symptoms. The association between non-respiratory presentations of COVID-19 and outcomes remains unclear. We investigated risk factors and clinical outcomes in patients with no respiratory symptoms (NRS) and respiratory symptoms (RS) at hospital admission. Methods: This study describes clinical features, physiological parameters, and outcomes of hospitalised COVID-19 patients, stratified by the presence or absence of respiratory symptoms at hospital admission. RS patients had one or more of: cough, shortness of breath, sore throat, runny nose or wheezing; while NRS patients did not. Results: Of 178,640 patients in the study, 86.4 % presented with RS, while 13.6 % had NRS. NRS patients were older (median age: NRS: 74 vs RS: 65) and less likely to be admitted to the ICU (NRS: 36.7 % vs RS: 37.5 %). NRS patients had a higher crude in-hospital case-fatality ratio (NRS 41.1 % vs. RS 32.0 %), but a lower risk of death after adjusting for confounders (HR 0.88 [0.83-0.93]). Conclusion: Approximately one in seven COVID-19 patients presented at hospital admission without respiratory symptoms. These patients were older, had lower ICU admission rates, and had a lower risk of in-hospital mortality after adjusting for confounders
    corecore