12 research outputs found

    Nitrogenous Compound Exposure in Unsanitary Rural Environments: A Case Study from Al Hoceima Province, Northern Morocco

    Get PDF
    Groundwater is a crucial drinking water resource for rural communities; however, the absence of adequate monitoring programs in these regions often results in uncertainties about groundwater quality. This study focuses on assessing the impact of nitrogen compounds from domestic wastewater on groundwater in rural communities within the province of Al Hoceima. The hydrochemistry of 33 groundwater samples was analyzed using various methods, including descriptive statistics, the Nitrate Pollution Index (NPI), the Chronic Health Risk Index (CHR), and a GIS-based spatial analysis. The investigation revealed significant contamination by nitrogen compounds in regions characterized by high population density. In these areas, nitrate (NO3-) and nitrite (NO2-) concentrations exceeded 50 mg/l and 0.2 mg/l, respectively, surpassing the WHO recommended limits. Notably, NO3- levels ranged from 0 to 89.63 mg/l, with 84.84% of groundwater samples contained more than 10 mg/l. The NPI values ranged from -1 to 3.48, with 33.33% of the samples were categorized as significantly and very significantly polluted. Additionally, CHR values ranged from 0 to 2.43 for adults, 0 to 2.03 for children, and 0 to 2.51 for infants. The CHR values exceeded 1 suggests that the contamination observed in the samples can be attributed to the widespread use of septic tanks in densely populated regions. Thus, to ensure the safety of rural communities, further assessments of health risks are mandatory

    Understanding salinity evolution in the Moroccan Ghiss-Nekor aquifer using differential mapping technique

    Get PDF
    Assessing spatiotemporal groundwater hydrochemistry evolution is crucial for sustainable aquifer management. The Ghiss-Nekor aquifer, located in a semi-arid coastal region, requires a comprehensive grasp of hydrochemical shifts for proactive degradation mitigation. Accordingly, the differential mapping technique (DMT) has been employed to assess the salinity evolution in the study area. In 2015 and 2022, 48 and 52 groundwater samples were respectively analyzed. As a result, an overall increase in salinity was observed within the Ghiss-Nekor aquifer, particularly near the shoreline, where in some areas the TDS variations (ΔTDS) exceeded +7000 mg/L. ΔCl- reached up to +129 meq/L near the coast. Similarly, ΔNa+, ΔSO42-, ΔMg2+, ΔCa2+, ΔK+, and ΔHCO3-, showed values up to +94 meq/L, +22 meq/L, +17 meq/L, +10 meq/L, +1 meq/L, and +5 meq/L, respectively, along the coast. In contrast, a decline in the levels of these ions was noted across most of the plain, especially in the southern portion. Positive major ions levels near the sea indicate ongoing freshwater degradation due to seawater intrusion. DMT approach showed its effectiveness in assessing the spatiotemporal changes occurring within aquifers. These findings advocate for broader DMT application in safeguarding aquifers impacted by salinization, promoting sustainable development

    Exploring salinity origins in the Ghiss-Nekor aquifer, northern Morocco: A multivariate statistical analysis

    Get PDF
    The Ghiss-Nekor coastal aquifer is characterized by high salinity stemming from multiple sources, remains poorly investigated. This study aims to address this knowledge gap by employing both univariate (descriptive statistics) and multivariate statistical analyses, including correlation matrix and principal component analysis (PCA). Groundwater samples were collected from 52 sites across the study area and meticulously analyzed for pH, TDS, EC, and the ions such as Na+, K+, Mg2+, Ca2+, NH4+, HCO3-, NO3-, NO2-,Cl-, SO42-, PO43-, and SiO2. Descriptive statistics, notably standard deviation (SD), highlight the diverse sources contributing to salinization, among which seawater intrusion (SWI) emerges as a significant factor. Correlation matrix analysis underscores multiple pathways for salinization, implicating SWI, salt dissolution, chemical weathering, secondary salt leaching, and anthropogenic activities. PCA elucidates 81.05% of the total variance in physicochemical parameters, with strong loadings observed for EC, Na+, Cl-, and Mg2+, corroborating the influence of SWI and suggesting evaporation processes. Moreover, PCA reinforces the potential influence of both geogenic and anthropogenic factors in salinization within the study area. This comprehensive investigation provides valuable insights into the elevated salinity levels observed in the Ghiss-Nekor aquifer, contributing to a deeper understanding of its hydrogeochemical dynamics

    Initial Discovery of Microplastic Presence in the Gastrointestinal Tract of Certain Fish Species in Al-Hoceima Bay

    Get PDF
    The accumulation of plastic waste in ocean environments is a critical ecological issue impacting marine wildlife and human health. This study assesses the presence of microplastics in the gastrointestinal tracts of fish from Al-Hoceima Bay, a key part of the Mediterranean marine ecosystem. Using Fourier Transform Infrared (FT-IR) spectroscopy, we analyzed 90 individuals from two different species, finding that 33% of the examined fish contained microplastics. Specific occurrences were 26% in mackerel and 40% in gilthead sea bream. These findings highlight significant contamination even in commercial fishing areas, raising urgent questions about the long-term ecological effects and health risks. Therefore, the need for effective plastic waste management policies is critical to protect our marine ecosystems and food safety

    Unveiling the Microplastics Menace: A Bibliometric Analysis from 2011 to 2023

    Get PDF
    The escalating production of Microplastics in marine environments has become a critical environmental issue. This in-depth study examines the worrying issue of microplastic pollution in aquatic environments, revealing notable gaps in the literature and presenting significant research opportunities. Microplastics, derived from the degradation of plastic waste, represent a major challenge for aquatic ecosystems due to their ease of ingestion by wildlife, with common polymers as the main sources. Major pathways of introduction include urban wastewater discharges and the mass disposal of plastic waste. Bioaccumulation, effects on marine ecosystems and identification techniques are areas requiring further exploration. At the same time, the increasing production of microplastics in marine environments is a critical environmental issue. Bibliometric analysis reveals key themes, including sources, production pathways, ecological impacts, and mitigation strategies. This research not only highlights current concerns, but also identifies emerging topics such as advanced monitoring technologies and sustainable production alternatives. Together, these findings offer crucial insights to guide future investigations aimed at mitigating the growing challenges associated with microplastic production in marine ecosystems

    Assessing the Efficacy of Commercial Activated Carbon Adsorption in Removing Emerging Contaminants from Wastewater

    Get PDF
    Powdered activated carbon was used in different studies for evaluation in micropollutants removal. In this study, powdered activated carbon was tested to evaluate its removal efficiency for about 46 micropollutants. A total of 33 compounds were found in raw wastewater. The PAC was found to be efficient towards total suspended solids elimination. Powdered activated carbon reached high removal percentage for heavy metals (90%), while the majority of the other compounds it varied between 60 and 80%. The impact of advanced treatments combination with conventional treatments could lead to high removals

    Modélisation hydrochimique de l’intrusion marine dans l’aquifère côtier de Ghiss-Nekor et caractérisation des zones potentielles en eaux souterraines dans les bassins versants de Ghiss et Nekor (Maroc) à l’aide des méthodes géospatiales

    No full text
    يعد تأثير تسرب مياه البحر على الفرشات المائية الساحلية مصدر قلق كبير عندما يتعلق الأمر بإدارة موارد المياه الجوفية. إن الفرشة المائية الساحلية لسهل غيس-النكور معرضة بشكل كبير لمخاطر تسرب مياه البحر بسبب الإفراط في ضخ المياه الجوفية والآثار الناتجة عن تغير المناخ. مستوى تأثر المياه الجوفية في سهل غيس-النكور غير واضح لحد الآن، ومن المحتمل أن توالي سنوات الجفاف والاستغلال المفرط للمياه الجوفية قد أدى إلى تفاقم ظاهرة تسرب مياه البحر. تهدف هذه الدراسة إلى: 1) دمج النهج الهيدروكيميائي مع التقنيات الجغرافية المكانية، لرسم خريطة تبين مدى تأثر مجال الدراسة بتسرب مياه البحر. 2) تتبع التطور المكاني-الزمني لتسرب مياه البحر من خلال تحليل بيانات هيدروكيميائية لسنتي 2015 و2022 باستخدام تقنية رسم الخرائط التفاضلية ومبيانات تطور السحنات الهيدروكيميائية. 3) رسم خرائط لمناطق احتمال تواجد المياه الجوفية في كل من حوض غيس وحوض النكور باستخدام التقنيات الجغرافية المكانية وعملية التحليل الهرمي. وذلك بهدف تحديد المصادر المحتملة للمياه التي يمكن استخدامها كبديل لتخفيف الضغط على الفرشة المائية في سهل غيس-النكور.كشفت الدراسة عن تأثر ما يقرب 20٪ من منطقة الدراسة بتسرب مياه البحر، حيث تقع 70 % من المناطق المتضررة على بعد كيلومترين من خط الساحل. كما كشف أيضًا التحليل المكاني-الزمني عن تفاقم ظاهرة تسرب مياه البحر مع مرور الوقت، حيث ارتفعت نسبة تأثر مجال الدراسة من 14٪ إلى 20٪ بين سنتي 2015 و2022. أظهرت دراسة تحديد مناطق احتمال تواجد المياه الجوفية والقائم على نظام المعلومات الجغرافية أن 38٪ من حوض غيس و25٪ من حوض النكور تتوفر على إمكانات جيدة وجيدة جدًا للمياه الجوفية. التحقق من دقة الخرائط النهائية أظهرت مستوى توافق جد مقبول وهو 70٪.توفر النتائج التي توصلنا إليها معلومات مهمة حول مدى تسرب مياه البحر إلى طبقات المياه الجوفية في سهل غيس-النكور، كما تعزز هذه النتائج فرضية أن الظاهرة المدروسة تزداد سوءًا بمرور الوقت. وستكون هذه المعلومات مفيدة لصانعي القرار في منطقة الحسيمة، لأنها ستساعد في وضع خطط فعالة لإدارة المياه الجوفية في المنطقة لمعالجة النقص في الموارد المائية الناجم عن انخفاض نسبة التساقطات المطرية والاستنزاف المفرط للمياه الجوفية.The impact of seawater intrusion (SWI) on coastal aquifers is a major concern when it comes to managing groundwater resources. The Ghiss-Nekor coastal aquifer is particularly vulnerable to SWI due to excessive groundwater pumping and the effects of climate change. The extent of SWI in this area is unclear, and the ongoing drought and overpumping of groundwater are expected to worsen the situation. Therefore, the present study aims : i) to use a hydrogeochemical approach (ionic ratios and SWI indexes), combined with geospatial techniques, to produce a map highlighting the regions most susceptible to SWI in the study area. ii) to track the spatiotemporal evolution of SWI by analyzing data from 2015 and 2022 using a differential mapping technique (DMT) and Hydrochemical Facies Evolution Diagrams (HFE-D). iii) to map the groundwater potential zones (GWPZ) in the Ghiss and Nekor watersheds using geospatial techniques and the Analytical Hierarchy Process (AHP) in order to identify potential sources of groundwater that can serve as alternatives and alleviate the pressure on the Ghiss-Nekor aquifer.As a result, approximately 20 % of the study area is impacted by SWI, with 70 % of the affected areas located within 2 km of the shoreline. The spatiotemporal analysis also revealed a significant increase in the extent of SWI, rising from 14 % to 20 % between 2015 and 2022. The GIS-based analysis of the GWPZ reveals that 38 % of the Ghiss basin and 25 % of the Nekor basin have good and very good potential for groundwater. To ensure the accuracy of the final maps, an appropriate validation method was employed, resulting in a 70 % level of agreement.Our findings provide crucial information on the extent of SWI in the Ghiss-Nekor aquifer and reinforce the assumption that SWI is worsening over time. This information is instrumental for decision-makers in the Al Hoceima region, as it can assist in the development of efficient groundwater management plans to tackle the shortage of water resources caused by declining levels of precipitation and the overpumping.L'impact de l'intrusion marine (IM) sur les aquifères côtiers est une préoccupation majeure en matière de gestion des ressources en eau souterraine. L'aquifère côtier de Ghiss-Nekor est particulièrement vulnérable à l'intrusion marine en raison de la surexploitation des eaux souterraines et des effets du changement climatique. L'étendue de l'IM dans cette zone reste incertaine et les conditions de sécheresse persistante et de surexploitation des eaux souterraines risquent d'aggraver la situation. Cette étude vise donc à : i) cartographier l'étendue de l'IM dans la zone d'étude en utilisant une approche hydrogéochimique (ratios ioniques et indices d’IM) combinée à des techniques géospatiales. ii) suivre l'évolution spatiotemporelle de l'IM en analysant les données de 2015 et 2022 à l'aide de la technique de cartographie différentielle (DMT) et de diagrammes d'évolution des faciès hydrochimiques (HFE-D). iii) cartographier les zones potentielles en eaux souterraines (ZPES) dans les bassins versants de Ghiss et Nekor, en utilisant des techniques géospatiales et le processus de la hiérarchie analytique (AHP), dans le but d'identifier des sources potentielles d'eau pouvant être utilisées en tant qu'alternative pour réduire la pression sur l'aquifère de Ghiss-Nekor.Les résultats de cette étude indiquent que l'IM affecte environ 20 % de la zone d'étude, principalement à moins de 2 km de la côte. De plus, l'analyse spatiotemporelle révèle une augmentation significative de l'IM, passant de 14 % à 20 % entre 2015 et 2022. L’analyse des ZPES révèle que 38 % du bassin de Ghiss et 25 % du bassin de Nekor présentent un fort et très fort potentiel pour les eaux souterraines. La validation de ces deux modèles montre un accord acceptable de 70 %.Nos résultats fournissent des informations cruciales sur l'ampleur de l'IM dans l'aquifère Ghiss-Nekor, renforçant ainsi l'hypothèse selon laquelle cette intrusion s'aggrave au fil du temps. Ces informations sont essentielles pour les décideurs de la région d'Al Hoceima, car elles peuvent aider à élaborer des plans de gestion efficaces des eaux souterraines pour faire face à la pénurie de ressources en eau causée par la diminution des niveaux de précipitation et la surexploitation des nappes phréatiques

    An Estimation of Soil Erosion Rate Hot Spots by Integrated USLE and GIS Methods: a Case Study of the Ghiss Dam and Basin in Northeastern Morocco

    No full text
    Soil erosion is a major factor leading to dams’ siltation and reducing their storage capacity. This study mapped the hot spots of soil erosion areas to predict the soil erosion/siltation in the Ghiss basin/dam (northeastern Morocco). In this context, various data has been prepared in the geographical information system for the estimation of soil erosion by integrating the universal soil loss equation (USLE). The result of this study revealed that soil loss rate ranges between 0 and 19 t∙ha−1∙yr−1. Therefore, the hot spots in the soil erosion area are to be found upstream, potentially leading to dam siltation over time. To avoid Ghiss dam siltation, we suggest terrace farming and reforestation in the soil erosion area hot spots

    Mapping the spatiotemporal evolution of seawater intrusion in the Moroccan coastal aquifer of Ghiss-Nekor using GIS-based modeling

    No full text
    The impact of seawater intrusion on coastal aquifers is a major concern in managing groundwater resources. The unconfined coastal aquifer of Ghiss-Nekor, located in a semi-arid area, is particularly vulnerable to seawater intrusion (SWI) because of excessive groundwater pumping and climate change impacts. Therefore, the main goal of the present work is to track the spatiotemporal evolution of SWI in the Ghiss-Nekor aquifer by analyzing data from the years 2015 and 2022 using appropriate geochemical approaches. Accordingly, a range of geochemical techniques were employed, including the Piper diagram, Chadha's diagram, Gibbs diagram, Stiff diagram, major ions variation maps, Hydrochemical Facies Evolution Diagrams (HFE-D), and seawater fraction (fsea). As a result, Gibbs diagram clearly indicates the contribution of seawater to the salinization of the Ghiss-Nekor aquifer. Further information is provided by the Piper, Chadha, and Stiff diagrams, which reveal that 29%–38% of the wells studied display Na–Cl water type, a characteristic feature of seawater facies. Additionally, statistical analysis shows a significant increase in salinity levels between 2015 and 2022. Furthermore, the spatiotemporal analysis using the differential mapping technique (DMT) confirmed the increase of salinity, particularly near the shoreline. Additionally, the HFE-D showed that the region impacted by SWI increased from 14% to 20% between 2015 and 2022, and the maximum fsea value rose from 14.84% to 25.77% over the same time frame. Our findings reinforce the assumption that SWI is worsening over time in the Ghiss-Nekor aquifer. In summary, the techniques used in this study were effective in tracking the spatiotemporal evolution of SWI in the aquifer and in quantifying it. The results of this study can inform the development of effective strategies for managing SWI in coastal aquifers

    Investigating Microplastics in the Mediterranean Coastal Areas – Case Study of Al-Hoceima Bay, Morocco

    No full text
    The issue of microplastics pollution is gaining increasing attention as a global environmental concern. These tiny particles, measuring no more than 5mm in size and coming in various shapes, can affect all types of marine ecosystems as they are easily consumed by a wide range of marine species. Al-Hoceima Bay, with its semi-enclosed nature and heavily affected anthropized coastline, was chosen as the study area for this research. The main objective was to investigate the presence of various microplastic types in Al-Hoceima Bay by implementing a sampling strategy along the coastline. This comprehensive approach was applied on a local scale within the bay (located in the northwest Mediterranean). Three stations were established in the bay, each located at different levels: the supralittoral, medilittoral and interlittoral. Microplastics were collected from these locations and classified into four categories based on their abundance. Digital microscopy was used to count the plastic particles and they were identified by Fourier transform-attenuated total reflectance infrared spectroscopy (ATR-FTIR). Results showed a higher presence of microplastics in water at 114 particles/L compared to sediment at 70 particles/L. The classification of samples revealed fibers as the most prevalent form, followed by fragments and films being the least commonly found. The abundance of fibers was found to be higher in water 90%, while in sediment it was 31%, however, fragments and leaves were found in higher concentrations in sediment. Polypropylene and polyethylene were identified as the major polymers used in the microplastics analyzed
    corecore