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Abstract. The Ghiss-Nekor coastal aquifer is characterized by high salinity 
stemming from multiple sources, remains poorly investigated. This study 
aims to address this knowledge gap by employing both univariate 
(descriptive statistics) and multivariate statistical analyses, including 
correlation matrix and principal component analysis (PCA). Groundwater 
samples were collected from 52 sites across the study area and meticulously 
analyzed for pH, TDS, EC, and the ions such as Na+, K+, Mg2+, Ca2+, NH4

+, 
HCO3

-, NO3
-, NO2

-,Cl-, SO4
2-, PO4

3-, and SiO2. Descriptive statistics, 
notably standard deviation (SD), highlight the diverse sources contributing 
to salinization, among which seawater intrusion (SWI) emerges as a 
significant factor. Correlation matrix analysis underscores multiple 
pathways for salinization, implicating SWI, salt dissolution, chemical 
weathering, secondary salt leaching, and anthropogenic activities. PCA 
elucidates 81.05% of the total variance in physicochemical parameters, with 
strong loadings observed for EC, Na+, Cl-, and Mg2+, corroborating the 
influence of SWI and suggesting evaporation processes. Moreover, PCA 
reinforces the potential influence of both geogenic and anthropogenic factors 
in salinization within the study area. This comprehensive investigation 
provides valuable insights into the elevated salinity levels observed in the 
Ghiss-Nekor aquifer, contributing to a deeper understanding of its 
hydrogeochemical dynamics.  
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1 Introduction 

Groundwater salinization has emerged as a global environmental concern, exerting 
significant impacts on countries worldwide. It incurs substantial ecological and economic 
costs while posing a threat to global health [1], and is widely recognized as a major form of 
water pollution  [2]. Managing and governing groundwater effectively proves challenging, 
particularly in arid and semi-arid environments [3, 4]. Therefore, it is crucial to identify the 
sources of groundwater salinization and comprehend the underlying processes and 
mechanisms, especially in coastal aquifers due to their complex nature and diverse sources. 

One of the effective multivariate statistical methods is the Principal Component Analysis 
(PCA), which plays a pivotal role in identifying sources of salinity in aquifers. By condensing 
numerous physicochemical parameters of groundwater into key factors, this method 
facilitates understanding of the aquifer characteristics and behavior regarding salinization 
and other water pollution sources [5, 6]. 

The Ghiss-Nekor aquifer serves as the primary groundwater storage in the Al-Hoceima 
province, a semi-arid Mediterranean area plagued by elevated groundwater salinity. This 
issue complicates drinking water supply management, worsened by reduced regulation 
capacity of the prinipal dam in the area (MBAK dam) as a result of silt accumulation [7]. 
Understanding the origins of salinization in this area is pivotal for managing the region's 
drinking water resources effectively. 

Several studies have assessed the physico-chemical quality of groundwater in the Ghiss-
Nekor plain, including those by [8], [9], [10], [11], [12], [13], [14], [15], and [16]. This study 
aims to complement these efforts by employing both univariate and multivariate statistical 
analyses to discern potential sources of salinization in the Ghiss-Nekor aquifer, by using the 
descriptive statistics, correlation matrix, and principal component analysis (PCA). This 
approach, emerging as an indispensable tool for informing water management strategies, 
aims to unravel the intricacies of groundwater salinity origins. 

2 Study area 

The Ghiss-Nekor plain (Fig. 1) lies southeastern Al-Hoceima in Northern Morocco. The area 
is intersected by the Ghiss River, which flows through the northwest, and the Nekor River, 
which traverses its center. Beneath the plain lies the Ghiss-Nekor aquifer, regarded as a 
principal alluvial aquifer in Morocco's Mediterranean region, spanning approximately 90 
km2. Estimates suggest the aquifer holds total reserves of around 328 million cubic meters 
(MCM) [17]. Geographically, the plain is delimited by the Imzouren-fault (NNW-SSE) to 
the West and the Trougout-fault (N-S) to the East; these faults are characterized as normal 
faults with a strike-slip component [18]. Geological formations within the aquifer (Fig. 2) 
extend from depths of 200 to 450 meters and mainly comprise coarse sand and gravel, with 
occasional mixtures of clay and silt, along with sporadic clay-marly lenses. Additionally, 
there is a wide clayey layer that extends prominently along the coast. Beneath the aquifer lies 
a bedrock composed of impermeable shale substratum. The region experiences a semi-arid 
Mediterranean climate, marked by gentle, rainy winters and scorching, arid summers. 
Rainfall typically occurs from October to April, while the dry, hot season extends from May 
to September. On average, the study area experiences a yearly temperature of 18°C, with 
intermittent yearly rainfall averaging 346mm [19]. 
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Fig. 1. The study area location. 

 

Fig. 2. Lithologic model of the Ghiss-Nekor aquifer. Lithology: (a) Abundance of gravel and pebble, 
(b) Abundance of shell sand, (c) Alluial deposit with silt and clay, (d) Clay, marl, and silt, (e) Coarse 
sand and gravel, (f) Shale. 

3 Materials and methods 

In January 2022, groundwater sampling was conducted in accordance with the guidelines set 
forth in the 9th edition of "Water analysis" [20], including storage, transportation, and 
laboratory analysis procedures. The parameters T (temperature), pH (acidity or alkalinity), 
and EC (electrical conductivity) were measured using the Multifunction pH Meter PCE-
PHD-1. Total dissolved solids (TDS) were determined by summing the levels of cations and 
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anions present in the water samples. Sodium (Na+) and potassium (K+) levels were 
determined using ELICO Digital Flame Photometer CL- 378 with an accuracy of ± 0.5 ppm. 
Calcium (Ca2+) and magnesium (Mg2+) concentrations were analyzed via titration with 
EDTA. Chloride ions (Cl-) were measured through titration with silver nitrate (0.1 N), while 
bicarbonate ions (HCO3

-) were determined using titration with hydrochloric acid (0.1 N). 
Nitrate (NO3

-), nitrite (NO2
-), ammonium (NH4

+), phosphate (PO4
3-), sulfate (SO4

2-), and 
silica (SiO2) levels were quantified using a colorimetric determination method with a Hach 
Lange DR 6000 UV-VIS Spectrophotometer, with a precision of ± 1 nm.  
The univariate and the multivariate statistics were conducted using SPSS 25.0 software. 
These methods are commonly used and beneficial for examining large datasets to 
comprehend geochemical assessments and pinpoint potential geological factors affecting 
groundwater chemistry. 

4 Results and discussion 

4.1 Descriptive statistics  

Table 1 presents a summary of the essential data regarding the physicochemical properties 
of the Ghiss-Nekor groundwater. The pH levels range from 7.1 to 8.2, indicating an alkaline 
nature, with an average of 7.6. It is notable that the pH exhibits a very low standard deviation 
(0.3), suggesting a consistent source across samples [21]. The EC ranges from 1612 to 15300 
µS/-cm, averaging 4076.3 µS/cm, while the TDS vary from 1449.5 to 10014.8 mg/L, with an 
average of 3043.6 mg/L. Cation abundance follows the sequence: Na+>Ca2+>Mg2+> 
K+>NH4

+, whereas anions follow: SO4
2->Cl->HCO3

->NO3
->PO4

3->NO2
-. This order of 

abundance aligns with findings by [22] upstream of the Ghiss-Nekor plain. 
The variability in measured concentrations of hydrochemical parameters, as indicated by 

their standard deviations, is substantial, with notable observed disparities, particularly in Cl- 
(823.6 mg/L), which ranges from 156 to 5140.7 mg/L, and averages 858.6 mg/L. These 
fluctuations imply the presence of multiple potential sources of salinization within the study 
area [23]. Seawater intrusion is identified as a potential contributor to salinization, evident 
from significant fluctuations (SD) in EC (2 ,337.8 µs/cm) and TDS (1 ,520.2 mg/L) [21]. 

 

Table 1. Descriptive statistics of the measured groundwater parameters. 

Parameter  Mean Median Minimum Maximum Std. deviation 
pH - 7.6 7.6 7.1 8.2 0.3 
EC  (µs/-cm) 4 076.3 3 480.0 1 612.0 15 300.0 2 337.8 
TDS 

m
g/

- L
 

3 043.6 2 717.5 1 449.5 10 014.8 1 520.2 
Na+ 529.6 436.0 137.0 2 560.0 413.8 
K+ 7.2 4.3 1.7 40.4 7.7 
Mg2+  142.7 131.0 56.6 395.5 65.6 
Ca2+  226.9 223.6 59.3 415.2 74.5 
NH4

+ 0.0187 0.0141 0.000 0.182 0.0294 
Cl-  858.6 627.5 156.0 5 140.7 823.6 
SO4

2-  873.1 857.4 235.1 1592.2 312.6 
HCO3

- 377.8 359.9 152.5 713.7 104.1 
NO3

- 29.526 19.790 <DL* 123.360 26.681 
NO2

-  26.379 0.000 <DL* 1 371.0 190.122 
PO4

3- 0.0795 0.0422 <DL* 0.5413 0.1109 
SiO2 20.5 15.3 5.5 81.0 16.6 
* DL : Detection limit. The DL for NO3

-, NO2
-, and NH4

- are 0.01 mg/L, 0.03 mg/L, and 0.002 mg/L, respectively. 
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4.2 Correlation analysis of hydrochemical parameters 

The correlation matrix was employed to evaluate the extent of association among different 
groundwater parameters, as outlined in Table 2. A robust association between these 
parameters is indicated by coefficients of +1 or -1, while 0 signifies no connection. Values 
falling between +0.50 to +0.70 suggest moderate correlation, those between +0.70 and +0.90 
indicate high correlation, and coefficients at +0.90 or above signify very high correlation. 
These three correlation coefficient categories were highlighted in bold within the correlation 
matrix. The significant positive associations of (Na+, Cl-, Mg2+, and K+) with (EC and TDS) 
underscore that these major ions predominantly govern the observed high salinity, likely 
originating from common sources [21], such as seawater intrusion occurrence [24] and salt 
dissolution [4, 25]. The exceptionally strong correlation between Na+ and Cl- (+0.99) 
underscores the influences of chemical weathering, secondary salt leaching, and seawater 
intrusion [26–28]. Likewise, the strong correlation between Ca2+ and SO4

2− (+0.92) indicates 
a possible shared origin, such as gypsum (CaSO4. 2H2O) or anhydrite (CaSO4) dissolution 
[4, 28, 29]. However, the substantial correlations of Mg2+ with Ca2+ (+0.74), Na+ (+0.84), 
and Cl- (+0.85) highly suggest common origins, chiefly seawater intrusion and carbonate 
dissolution [28]. The significant correlations between K+ and Na+, as well as Cl-, imply a 
shared source, particularly near the shoreline where these ions are abundant, suggesting that 
seawater infiltration could be a potential factor contributing to salinity increase in coastal 
areas [25]. SiO2 demonstrates a high correlation with PO4

3- (+0.95) and moderate correlations 
with NO3

- (+0.60), with SiO2 being geogenic while PO4
3- and NO3

- are predominantly 
anthropogenic, originating from sources like septic systems, manure, and commercial 
fertilizers [30]. The strong correlation between SiO2, PO4

3-, and NO3
- can be attributed to 

enhanced silicate weathering due to the nitrification process [31]. Weak to very weak 
correlations between NH4

+, NO3
−, NO2

-, PO4
3- with most variables (EC, TDS, Na+, K+, Mg2+, 

Ca2+, Cl-) indicate diverse sources for these ions, suggesting human activities such as sewage 
leaks and agricultural practices have influenced groundwater chemistry. The presence of a 
highly insignificant negative correlation (-0.37< r <0.32) observed between pH and the other 
parameters suggests minimal impact of pH fluctuations on groundwater salinity [25]. 
 

Table 2. Matrix of correlations of the measured parameters. 

4.3 Principal component analysis (PCA) 

PCA analysis was employed to explore the underlying sources of variation in hydrochemical 
variables, condensing a multitude of individual parameters into a more concise set while 
preserving their inherent attributes [23]. This approach aids in spotlighting the primary 

Ions Na+ K+ Mg2+ Ca2+ NH4
+ Cl- SO4

2- HCO3
- NO3

- NO2
- PO4

3- SiO2 EC TDS pH 

Na+ 1               
K+ .79 1              
Mg2+ .84 .56 1             
Ca2+ .49 .20 .74 1            
NH4

+ .14 .24 .23 .18 1           
Cl- .99 .77 .85 .50 .16 1          
SO4

2- .38 .14 .69 .92 .20 .36 1         
HCO3

- .19 .02 .26 -.01 -.09 .14 .02 1        
NO3

- .21 .18 .04 -.15 .03 .19 -.16 .12 1       
NO2

- .26 .17 .11 -.14 -.05 .24 -.12 .19 .33 1      
PO4

3- .18 .25 -.06 -.29 -.03 .16 -.36 .16 .61 .03 1     
SiO2 .18 .22 -.08 -.26 -.04 .16 -.37 .14 .60 .05 .95 1    
EC .99 .75 .91 .60 .18 .99 .49 .19 .19 .15 .12 .12 1   
TDS .97 .71 .93 .68 .18 .96 .58 .21 .15 .15 .07 .07 .99 1  
pH -.22 -.04 -.18 -.26 .32 -.19 -.18 -.37 -.03 .05 -.18 -.23 -.22 -.25 1 
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variables impacting groundwater chemistry. In this study, PCA was executed through 
orthogonal varimax rotation alongside Kaiser normalization, a frequently employed rotation 
method known to mitigate the influence of less significant groundwater quality parameters 
identified through PCA analysis [32]. The analysis focused on 13 chosen variables 
representing the geochemical framework. To assess the dataset's suitability for PCA, Kaiser 
Meyer Olkin (KMO) and Bartlett's tests [33] were conducted, with the results detailed in 
Table 3. A KMO value exceeding 0.5 and a Bartlett's test significance below 0.05 reflecing 
significant correlation within the data. In this investigation, the KMO sufficiency value stood 
at 0.  642, with a significance value of less than 0.001. 

Four principal components (Eigenvalues >1) were selected, collectively explaining 
81.05% of the total variance. Component 1 accounted for 40.12%, component 2 for 23.21%, 
component 3 for 9.60%, and component 4 for 8.12%. Table 4 presents the respective loadings 
for each component, with loadings exceeding 0.65 highlighted. These were employed to 
examine the connections between components and hydrochemical parameters [23]. 

Component 1, termed the "salinization component," displays strong positive loadings for 
EC, Na+, Cl-, Mg2+ with values of +0.98, +0.94, +0.96, and +0.92, respectively, and 
moderately positive loadings for K+, Ca2+, and SO4

2- with values of +0.78, +0.63, and +0.54, 
respectively, suggesting potential influence from seawater intrusion. Component 2 
showcases robust positive-loadings for PO4

3- (+0.91), SiO2 (+0.90), and NO3
- (+0.67), 

indicative of anthropogenic sources such as domestic sewage and agricultural run-off [31]. 
Component 3 is characterized by a strong positive loading of NO2

-, pointing to pollution from 
human activities, particularly evident in urban areas such as Imzouren [9, 33]. Component 4 
displays a moderately positive loading of NH4

+, likely attributed to agricultural practices or 
sewage seepage  [35], while HCO3

- exhibits a negative correlation, indicative of natural 
processes like carbonate mineral dissolution [36]. 

These PCA findings highlight complex hydrogeochemical processes, including 
weathering of recharge area material, evaporation, seawater intrusion, and anthropogenic 
influences such as agriculture and residential sewage seepage. 

 

Table 3. Kaiser–Meyer–Olkin (KMO) test and Bartlett’s test of sphericity. 

Tests Measured value 
Kaiser-Meyer-Olkin (KMO) Measure of sampling sufficiency .64 

Bartlett's test of sphericity 
Approximate Chi-Square value 987.71 

 df 78 
Sig. <0.001 

df: degrees of freedom; Sig. : significance 
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Table 4. Rotated matrix of components for the measured parameters. 

Parameters 
Component 

1 2 3 4 
EC .98 .02 .09 -.02 
Na+ .97 .12 .04 -.04 
Cl- .96 .10 .04 .00 
Mg2+ .92 -.24 .13 -.06 
K+ .78 .29 -.15 .19 
Ca2+ .63 -.56 .28 .10 
PO4

3- .13 .91 .07 -.05 
SiO2 .12 .90 .10 -.05 
NO3

- .13 .67 .57 .03 
SO4

2- .54 -.64 .26 .10 
NO2

- .05 .05 .87 -.08 
HCO3

- .22 .10 -.03 -.78 
NH4

+ .25 -.02 -.10 .68 
Eigenvalue 5.22 3.02 1.25 1.06 
Variance (%) 40.12 23.21 9.60 8.12 
Cumulative (%) 40.12 63.33 72.93 81.05 
The highlighted values indicate positive-loadings of the associated parameters within the extracted components. 

5 Conclusion 

The study provides a comprehensive understanding of the elevated salinity levels observed 
in the Ghiss-Nekor aquifer, shedding light on the hydrogeochemical dynamics and 
underlying sources of salinization in the region. Through a combination of descriptive 
statistics, correlation matrix analysis, and principal component analysis (PCA), the study 
elucidates the complex interplay of various factors contributing to groundwater salinity. The 
findings reveal significant correlations among physicochemical parameters, emphasizing the 
dominant influence of seawater intrusion, salt dissolution, chemical weathering, secondary 
salt leaching, and anthropogenic activities. PCA analysis further consolidates these insights, 
identifying distinct components associated with salinization, anthropogenic contamination, 
and specific pollutants originating from human activities such as agriculture and urban 
sewage. Moreover, the study highlights the multifaceted nature of hydrogeochemical 
processes within the Ghiss-Nekor aquifer, including weathering of recharge area materials, 
evaporation, and the intricate interplay between geogenic and anthropogenic influences. 
These insights are crucial for formulating effective water management strategies aimed at 
mitigating salinity issues and preserving the quality of groundwater resources in the region. 

 
We extend our sincere gratitude to the reviewers for their valuable feedback, which substantially 
improved the quality of this manuscript. 
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