21 research outputs found

    Ameliorations in dyslipidemia and atherosclerotic plaque by the inhibition of HMG-CoA reductase and antioxidant potential of phytoconstituents of an aqueous seed extract of Acacia senegal (L.) Willd in rabbits

    Get PDF
    The assigned work was aimed to examine the capability of phytoconstituents of an aqueous seed extract of Acacia senegal (L.) Willd to inhibit HMG-CoA reductase and regression of the atherosclerotic plaque. The chemical fingerprinting of the test extract was assessed by LC-MS/MS. Consequently, the analyses of in-vitro, in-vivo, and in-silico were executed by using the standard protocols. The in-vitro assessment of the test extract revealed 74.1% inhibition of HMG-CoA reductase. In-vivo assessments of the test extract indicated that treated hypercholesterolemic rabbits exhibited a significant (P≤0.001) amelioration in the biomarker indices of the dyslipidaemia i.e., atherogenic index, Castelli risk index(I&II), atherogenic coefficient along with lipid profile. Subsequently, significant reductions were observed in the atherosclerotic plaque and antioxidant levels. The in-silico study of molecular docking shown interactions capabilities of the leading phytoconstituents of the test extract i.e., eicosanoic acid, linoleic acid, and flavan-3-ol with target protein of HMG-CoA reductase. The values of RSMF and potential energy of top docked complexes were show significant interactions. Accordingly, the free energy of solvation, interaction angle, radius of gyration and SASA were shown significant stabilities of top docked complex. The cumulative data of results indicate phytoconstituents of an aqueous seed extract of Acacia senegal have capabilities to inhibit the HMG-CoA reductase and improve the levels of antioxidants

    The Effectiveness of Protected Areas in Conserving Globally Threatened Western Tragopan Tragopan melanocephalus.

    Get PDF
    Protected areas are a critical tool to conserve biodiversity in the face of the global crisis of species extinction. Here, we present the first ever management effectiveness assessment of Pakistan's Protected Areas (PAs). We link these assessments to the delivery of conservation outcomes focusing on the threatened Western Tragopan (Tragopan melanocephalus) endemic to Pakistan and India. We used two approaches, first mapping the spatial distribution of potential habitat coverage using machine learning ensemble models and second, an assessment of the management effectiveness of protected areas. Our results show that only Machiara National Park scored just above 40% (indicating relatively weak management), 22 of the PAs fell within the 25-50% quantile (indicating weak management), and 3 scored below 25% (indicating poor management). PAs within the species distributional range covered 92,387 ha which is only 2% of the total potential habitat of the Tragopan. Scoring of Planning element was insufficient both in term of the site and species. Likewise, inputs (e.g., research and monitoring program, staff numbers, staff training, current budget, security of budget, and management after process) were also inadequate. Finally, we recommend the establishment of more protected areas within the species potential habitat and inclusion of species-specific plans in Pakistan's PAs management

    Microbial cooperation in the rhizosphere improves liquorice growth under salt stress

    Get PDF
    Liquorice (Glycyrrhiza uralensis Fisch.) is one of the most widely used plants in food production, and it can also be used as an herbal medicine or for reclamation of salt-affected soils. Under salt stress, inhibition of plant growth, nutrient acquisition and symbiotic interactions between the medicinal legume liquorice and rhizobia have been observed. We recently evaluated the interactions between rhizobia and root-colonizing Pseudomonas in liquorice grown in potting soil and observed increased plant biomass, nodule numbers and nitrogen content after combined inoculation compared to plants inoculated with Mesorhizobium alone. Several beneficial effects of microbes on plants have been reported; studies examining the interactions between symbiotic bacteria and root-colonizing Pseudomonas strains under natural saline soil conditions are important, especially in areas where a hindrance of nutrients and niches in the rhizosphere are high. Here, we summarize our recent observations regarding the combined application of rhizobia and Pseudomonas on the growth and nutrient uptake of liquorice as well as the salt stress tolerance mechanisms of liquorice by a mutualistic interaction with microbes. Our observations indicate that microbes living in the rhizosphere of liquorice can form a mutualistic association and coordinate their involvement in plant adaptations to stress tolerance. These results support the development of combined inoculants for improving plant growth and the symbiotic performance of legumes under hostile conditions.Peer reviewe

    Exploring bioactivities from distinct Cicer protein hydrolysate as influenced by enzymatic hydrolysis

    No full text
    The genus, Cicer, accomodate chickpeas which offer a highly nutritious profile for human wellness. In this study, we hydrolyzed different species of Cicer seed proteins using various proteolytic enzymes to determine DH, antioxidant, ACE-I inhibitory and anti-inflammatory activity. The alcalase hydrolysis experimented for 120 minutes achieved maximum peptide content. And subsequent size fractionation of peptide by G-50 gel filtration column chromatography showed an enhancement in bioactivity. The alcalase hydrolysate demonstrated highest ACE inhibition (66.18 ± 2.65%, 64.22 ± 1.32%, and 60.19 ± 1.46%) in Cicer arietinum, Cicer reticulatum, and Cicer echinospermum, respectively. Furthermore, alcalase hydrolysate showed promising antioxidant efficacy measured by various techniques. Hyaluronidase inhibition was moderate, while lipoxygenase inhibition of alcalase hydrolysate showed an elevated response (IC50 = 32.6 ± 1.4 μg/ml for C. arietinum). Among all proteases, alcalase generated maximum degree of hydrolysis, resulting in peptides that exhibited significantly improved bioactivity

    Understanding and Designing the Strategies for the Microbe-Mediated Remediation of Environmental Contaminants Using Omics Approaches

    No full text
    Rapid industrialization and population explosion has resulted in the generation and dumping of various contaminants into the environment. These harmful compounds deteriorate the human health as well as the surrounding environments. Current research aims to harness and enhance the natural ability of different microbes to metabolize these toxic compounds. Microbial-mediated bioremediation offers great potential to reinstate the contaminated environments in an ecologically acceptable approach. However, the lack of the knowledge regarding the factors controlling and regulating the growth, metabolism, and dynamics of diverse microbial communities in the contaminated environments often limits its execution. In recent years the importance of advanced tools such as genomics, proteomics, transcriptomics, metabolomics, and fluxomics has increased to design the strategies to treat these contaminants in ecofriendly manner. Previously researchers has largely focused on the environmental remediation using single omics-approach, however the present review specifically addresses the integrative role of the multi-omics approaches in microbial-mediated bioremediation. Additionally, we discussed how the multi-omics approaches help to comprehend and explore the structural and functional aspects of the microbial consortia in response to the different environmental pollutants and presented some success stories by using these approaches

    Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system

    No full text
    Salinity stress affected crop production of more than 20% of irrigated land globally. In the present study the effect of different concentrations of NaCl (0, 100, and 200 mM) on growth, physio-biochemical attributes, antioxidant enzymes, oil content, etc. in Brassica juncea and the protective role of Trichoderma harzianum (TH) was investigated. Salinity stress deteriorates growth, physio-biochemical attributes, that ultimately leads to decreased biomass yield in mustard seedlings. Higher concentration of NaCl (200 mM) decreased the plant height by 33.7%, root length by 29.7% and plant dry weight (DW) by 34.5%. On the other hand, supplementation of TH to NaCl treated mustard seedlings showed elevation by 13.8, 11.8, and 16.7% in shoot, root length and plant DW respectively as compared to plants treated with NaCl (200 mM) alone. Oil content was drastically affected by NaCl treatment; however, TH added plants showed enhanced oil percentage from 19.4 to 23.4% in the present study. NaCl also degenerate the pigment content and the maximum drop of 52.0% was recorded in Chl. ‘a’. Enhanced pigment content was observed by the application of TH to NaCl treated plants. Proline content showed increase by NaCl stress and maximum accumulation of 59.12% was recorded at 200 mM NaCl. Further enhancement to 70.37% in proline content was recorded by supplementation of TH. NaCl stress (200 mM) affirms the increase in H2O2 by 69.5% and MDA by 36.5%, but reduction in the accumulation is recorded by addition of TH to mustard seedlings. 200 mM NaCl elevated SOD, POD, APX, GR, GST, GPX, GSH, and GSSG in the present study. Further enhancement was observed by the application of TH to the NaCl fed seedlings. NaCl stress suppresses the uptake of important elements in both roots and shoots, however, addition of TH restored the elemental uptake in the present study. Mustard seedlings treated with NaCl and TH showed restricted Na uptake as compared to seedlings treated with NaCl alone. In conclusion, TH proved to be very beneficial in imparting resistance to the mustard plants against NaCl stress through improved uptake of essential elements, modulation of osmolytes and antioxidants

    Quercetin mitigates the deoxynivalenol mycotoxin induced apoptosis in SH-SY5Y cells by modulating the oxidative stress mediators

    No full text
    Deoxynivalenol (DON) is Fusarium mycotoxin that is frequently found in many cereal-based foods, and its ingestion has a deleterious impact on human health. In this investigation, we studied the mechanism of DON-induced neurotoxicity and followed by cytoprotective efficacy of quercetin (QUE) in contradiction of DON-induced neurotoxicity through assessing the oxidative stress and apoptotic demise in the human neuronal model, i.e. SH-SY5Y cells. DON diminished the proliferation of cells in the manner of dose and time-dependent as revealed by cell viability investigations, i.e. MTT and lactate dehydrogenase assays. Additional studies, such as intracellular reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial membrane potential (MMP), DNA damage, cell cycle, and neuronal biomarkers (amino acid decarboxylase, tyrosine hydroxylase, and brain-derived neurotrophic factor) demonstrated that DON induces apoptotic demise in neuronal cells through oxidative stress intermediaries. On another hand, pre-treatment of neuronal cells with 1 mM of quercetin (QUE) showed decent viability upon exposure to 100 mM of DON. In detailed studies demonstrated that QUE (1 mM) pre-treated cells show strong attenuation efficiency against DON-induced ROS generation, LPO, MMP loss, DNA impairment, cell cycle arrest, and down-regulation of neuronal biomarkers. The consequences of the investigation concluded that QUE mitigates the DON-induced stress viz., decreased ROS production and LPO generation, upholding MMP and DNA integrity and regulation of neuronal biomarker gene expression in SH-SY5Y cells. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University

    Genomics, molecular and evolutionary perspective of NAC transcription factors.

    No full text
    NAC (NAM, ATAF1,2, and CUC2) transcription factors are one of the largest transcription factor families found in the plants and are involved in diverse developmental and signalling events. Despite the availability of comprehensive genomic information from diverse plant species, the basic genomic, biochemical, and evolutionary details of NAC TFs have not been established. Therefore, NAC TFs family proteins from 160 plant species were analyzed in the current study. Study revealed, Brassica napus (410) encodes highest number and Klebsormidium flaccidum (3) encodes the lowest number of TFs. The study further revealed the presence of NAC TF in the Charophyte algae K. flaccidum. On average, the monocot plants encode higher number (141.20) of NAC TFs compared to the eudicots (125.04), gymnosperm (75), and bryophytes (22.66). Furthermore, our analysis revealed that several NAC TFs are membrane bound and contain monopartite, bipartite, and multipartite nuclear localization signals. NAC TFs were also found to encode several novel chimeric proteins and regulate a complex interactome network. In addition to the presence of NAC domain, several NAC proteins were found to encode other functional signature motifs as well. Relative expression analysis of NAC TFs in A. thaliana revealed root tissue treated with urea and ammonia showed higher level of expression and leaf tissues treated with urea showed lower level of expression. The synonymous codon usage is absent in the NAC TFs and it appears that they have evolved from orthologous ancestors and undergone vivid duplications to give rise to paralogous NAC TFs. The presence of novel chimeric NAC TFs are of particular interest and the presence of chimeric NAC domain with other functional signature motifs in the NAC TF might encode novel functional properties in the plants

    Analysis of mutations of defensin protein using accelerated molecular dynamics simulations.

    No full text
    Plant defensins possess diverse biological functions that include antifungal and antibacterial activities and α-amylase and trypsin inhibitory properties. Two mutations, G9R and V39R, were confirmed to increase the antifungal activity of Raphanus sativus antifungal protein 2 (RsAFP2). Accelerated Molecular Dynamics (aMD) were carried out to examine the conformational changes present in these RsAFP2 mutants, and its two closest homologs compared to the wild-type protein. Specifically, the root mean square fluctuation values for the eight cysteine amino acids involved in the four disulfide bonds were low in the V39R mutant compared to the wild-type. Additionally, analysis of the free energy change revealed that G9R and V39R mutations exert a neutral and stabilizing effect on RsAFP2 conformation, and this is supported by the observed lower total energy of mutants compared to the wild-type, suggesting that enhanced stability of the mutants. However, MD simulations to a longer time scale would aid in capturing more conformational state of the wild-type and mutants defensin protein. Furthermore, the aMD simulations on fungal mimic membranes with RsAFP2 and its mutants and homologs showed that the mutant proteins caused higher deformation and water diffusion than the native RsAFP2, especially the V39R mutant. The mutant variants seem to interact by specifically targeting the POPC and POPI lipids amongst others. This work highlights the stabilizing effect of mutations at the 9th and 39th positions of RsAFP2 and their increased membrane deformation activity

    Analysis of genetic control and QTL mapping of essential wheat grain quality traits in a recombinant inbred population.

    No full text
    Wheat cultivars are genetically crossed to improve end-use quality for traits as per demands of baking industry and broad consumer preferences. The processing and baking qualities of bread wheat are influenced by a variety of genetic make-ups, environmental factors and their interactions. Two wheat cultivars, WL711 and C306, derived recombinant inbred lines (RILs) with a population of 206, were used for phenotyping of quality-related traits. The genetic analysis of quality traits showed considerable variation for measurable quality traits, with normal distribution and transgressive segregation across the years. From the 206 RILs, few RILs were found to be superior to those of the parental cultivars for key quality traits, indicating their potential use for the improvement of end-use quality and suggesting the probability of finding new alleles and allelic combinations from the RIL population. Mapping analysis identified 38 putative QTLs for 13 quality-related traits, with QTLs explaining 7.9-16.8% phenotypic variation spanning over 14 chromosomes, i.e., 1A, 1B, 1D, 2A, 2D, 3B, 3D, 4A, 4B, 4D, 5D, 6A, 7A and 7B. In-silico analysis based on homology to the annotated wheat genes present in database, identified six putative candidate genes within QTL for total grain protein content, qGPC.1B.1 region. Major QTL regions for other quality traits such as TKW have been identified on 1B, 2A, and 7A chromosomes in the studied RIL population. This study revealed the importance of the combination of stable QTLs with region-specific QTLs for better phenotyping, and the QTLs presented in our study will be useful for the improvement of wheat grain and bread-making quality
    corecore