497 research outputs found

    Determination of Inflationary Observables by Cosmic Microwave Background Anisotropy Experiments

    Get PDF
    Inflation produces nearly Harrison-Zel'dovich scalar and tensor perturbation spectra which lead to anisotropy in the cosmic microwave background (CMB). The amplitudes and shapes of these spectra can be parametrized by QS2Q_S^2, rQT2/QS2r\equiv Q_T^2/Q_S^2, nSn_S and nTn_T where QS2Q_S^2 and QT2Q_T^2 are the scalar and tensor contributions to the square of the CMB quadrupole and nSn_S and nTn_T are the power-lawspectral indices. Even if we restrict ourselves to information from angles greater than one third of a degree, three of these observables can be measured with some precision. The combination 1301nSQS2130^{1-n_S}Q_S^2 can be known to better than ±0.3%\pm 0.3\%. The scalar index nSn_S can be determined to better than ±0.02\pm 0.02. The ratio rr can be known to about ±0.1\pm 0.1 for nS1n_S \simeq 1 and slightly better for smaller nSn_S. The precision with which nTn_T can be measured depends weakly on nSn_S and strongly on rr. For nS1n_S \simeq 1 nTn_T can be determined with a precision of about ±0.056(1.5+r)/r\pm 0.056(1.5+r)/r. A full-sky experiment with a 2020'beam using technology available today, similar to those being planned by several groups, can achieve the above precision. Good angular resolution is more important than high signal-to-noise ratio; for a given detector sensitivity and observing time a smaller beam provides significantly more information than a larger beam. The uncertainties in nSn_S and rr are roughly proportional to the beam size. We briefly discuss the effects of uncertainty in the Hubble constant, baryon density, cosmological constant and ionization history.Comment: 28 pages of uuencoded postscript with 8 included figures. A postscript version is also available by anonymous ftp at ftp://astro.uchicago.edu/pub/astro/knox/fullsim.p

    Semliki Forest virus induced, immune mediated demyelination: the effect of irradiation

    Get PDF
    International audienceThe Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey (DES). The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 mag fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = -38.14° ± 0.08° (near side in the north) and a position angle for the line of nodes of θ0 = 129.51° ± 0.17°. We find that stars younger than ∼4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4 Gyr = 1.41 ± 0.01 kpc, while the younger population has R = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is {∼eq } 24^{+9}_{-6} times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fitting LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. Our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component

    Forward Global Photometric Calibration of the Dark Energy Survey

    Get PDF
    Many scientific goals for the Dark Energy Survey (DES) require calibration of optical/NIR broadband b=grizYb = grizY photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a "Forward Global Calibration Method (FGCM)" for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broad-band survey imaging itself and models of the instrument and atmosphere to estimate the spatial- and time-dependence of the passbands of individual DES survey exposures. "Standard" passbands are chosen that are typical of the passbands encountered during the survey. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude mbstdm_b^{\mathrm{std}} in the standard system. This "chromatic correction" to the standard system is necessary to achieve sub-percent calibrations. The FGCM achieves reproducible and stable photometric calibration of standard magnitudes mbstdm_b^{\mathrm{std}} of stellar sources over the multi-year Y3A1 data sample with residual random calibration errors of σ=56mmag\sigma=5-6\,\mathrm{mmag} per exposure. The accuracy of the calibration is uniform across the 5000deg25000\,\mathrm{deg}^2 DES footprint to within σ=7mmag\sigma=7\,\mathrm{mmag}. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than 5mmag5\,\mathrm{mmag} for main sequence stars with 0.5<gi<3.00.5<g-i<3.0.Comment: 25 pages, submitted to A

    Evidence for Color Dichotomy in the Primordial Neptunian Trojan Population

    Get PDF
    In the current model of early Solar System evolution, the stable members of the Jovian and Neptunian Trojan populations were captured into resonance from the leftover reservoir of planetesimals during the outward migration of the giant planets. As a result, both Jovian and Neptunian Trojans share a common origin with the primordial disk population, whose other surviving members constitute today's trans-Neptunian object (TNO) populations. The cold classical TNOs are ultra-red, while the dynamically excited "hot" population of TNOs contains a mixture of ultra-red and blue objects. In contrast, Jovian and Neptunian Trojans are observed to be blue. While the absence of ultra-red Jovian Trojans can be readily explained by the sublimation of volatile material from their surfaces due to the high flux of solar radiation at 5AU, the lack of ultra-red Neptunian Trojans presents both a puzzle and a challenge to formation models. In this work we report the discovery by the Dark Energy Survey (DES) of two new dynamically stable L4 Neptunian Trojans,2013 VX30 and 2014 UU240, both with inclinations i >30 degrees, making them the highest-inclination known stable Neptunian Trojans. We have measured the colors of these and three other dynamically stable Neptunian Trojans previously observed by DES, and find that 2013 VX30 is ultra-red, the first such Neptunian Trojan in its class. As such, 2013 VX30 may be a "missing link" between the Trojan and TNO populations. Using a simulation of the DES TNO detection efficiency, we find that there are 162 +/- 73 Trojans with Hr < 10 at the L4 Lagrange point of Neptune. Moreover, the blue-to-red Neptunian Trojan population ratio should be higher than 17:1. Based on this result, we discuss the possible origin of the ultra-red Neptunian Trojan population and its implications for the formation history of Neptunian Trojans

    COSMOGRAIL XVI: Time delays for the quadruply imaged quasar DES J0408-5354 with high-cadence photometric monitoring

    Full text link
    We present time-delay measurements for the new quadruply imaged quasar DES J0408-5354, the first quadruply imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost daily observations with the MPIA 2.2m telescope at La Silla observatory and deep exposures reaching a signal-to-noise ratio of about 1000 per quasar image. This data quality allows us to catch small photometric variations (a few mmag rms) of the quasar, acting on temporal scales much shorter than microlensing, hence making the time delay measurement very robust against microlensing. In only 7 months we measure very accurately one of the time delays in DES J0408-5354: Dt(AB) = -112.1 +- 2.1 days (1.8%) using only the MPIA 2.2m data. In combination with data taken with the 1.2m Euler Swiss telescope, we also measure two delays involving the D component of the system Dt(AD) = -155.5 +- 12.8 days (8.2%) and Dt(BD) = -42.4 +- 17.6 days (41%), where all the error bars include systematics. Turning these time delays into cosmological constraints will require deep HST imaging or ground-based Adaptive Optics (AO), and information on the velocity field of the lensing galaxy.Comment: 9 pages, 5 figures, accepted for publication in Astronomy & Astrophysic
    corecore