23,943 research outputs found
Guidance, flight mechanics and trajectory optimization. Volume 1 - Coordinate systems and time measure
Coordinate measuring system for flight control, and trajectory optimizatio
Low-speed wind-tunnel investigation of the aerodynamic and acoustic performance of a translating grid choked flow inlet
The aerodynamic and acoustic performance of a translating grid choked-flow inlet was determined in a low-speed wind tunnel at free-stream velocities of 24, 32, and 45 m/sec and incidence angles of 0, 10, 20, 30, 35, 40, 45, and 50 deg. The inlet was sized to fit a 13.97- centimeter-diameter fan with a design weight flow of 2.49 kg/sec. Measurements were made to determine inlet total pressure recovery, flow distortion, and sound pressure level for both choked and unchoked geometries over a range of inlet weight flows. For the unchoked geometry, inlet total pressure recovery ranged from 0.983 to 0.989 at incidence angles less than 40 deg. At 40 deg incidence angle, inlet cowl separation was encountered which resulted in lower values of pressure recovery and higher levels of fan broadband noise. For the choked geometry, increasing total pressure losses occurred with increasing inlet weight flow that prevented the inlet from reaching full choked conditions with the particular fan used. These losses were attributed to the high Mach number drag rise characteristics of airfoil grid. At maximum attainable inlet weight flow, the total pressure recovery at static conditions was 0.935. The fan blade passing frequency and other fan generated pure tones were eliminated from the noise spectrum, but the broadband level was increased
Searches for Gravitational Waves from Binary Neutron Stars: A Review
A new generation of observatories is looking for gravitational waves. These
waves, emitted by highly relativistic systems, will open a new window for ob-
servation of the cosmos when they are detected. Among the most promising
sources of gravitational waves for these observatories are compact binaries in
the final min- utes before coalescence. In this article, we review in brief
interferometric searches for gravitational waves emitted by neutron star
binaries, including the theory, instru- mentation and methods. No detections
have been made to date. However, the best direct observational limits on
coalescence rates have been set, and instrumentation and analysis methods
continue to be refined toward the ultimate goal of defining the new field of
gravitational wave astronomy.Comment: 30 pages, 5 Figures, to appear in "Short-Period Binary Stars:
Observations, Analyses, and Results", Ed.s Eugene F. Milone, Denis A. Leahy,
David W. Hobil
Proposed method for searches of gravitational waves from PKS 2155-304 and other blazar flares
We propose to search for gravitational waves from PKS 2155-304 as well as
other blazars. PKS 2155-304 emitted a long duration energetic flare in July
2006, with total isotropic equivalent energy released in TeV gamma rays of
approximately ergs. Any possible gravitational wave signals
associated with this outburst should be seen by gravitational wave detectors at
the same time as the electromagnetic signal. During this flare, the two LIGO
interferometers at Hanford and the GEO detector were in operation and
collecting data. For this search we will use the data from multiple
gravitational wave detectors. The method we use for this purpose is a coherent
network analysis algorithm and is called {\tt RIDGE}. To estimate the
sensitivity of the search, we perform numerical simulations. The sensitivity to
estimated gravitational wave energy at the source is about
ergs for a detection probability of 20%. For this search, an end-to-end
analysis pipeline has been developed, which takes into account the motion of
the source across the sky.Comment: 10 pages, 7 figures. Contribution to 12th Gravitational Wave Data
Analysis Workshop. Submitted to Classical and Quantum Gravity. Changes in
response to referee comment
Effects of the R-parity violation in the minimal supersymmetric standard model on dilepton pair production at the CERN LHC
We investigate in detail the effects of the R-parity lepton number violation
in the minimal supersymmetric standard model (MSSM) on the parent process at the CERN Large Hadron Collider (LHC). The numerical
comparisons between the contributions of the R-parity violating effects to the
parent process via the Drell-Yan subprocess and the gluon-gluon fusion are
made. We find that the R-violating effects on pair production at the
LHC could be significant. The results show that the cross section of the pair productions via gluon-gluon collision at the LHC can be of the order
of fb, and this subprocess maybe competitive with the production
mechanism via the Drell-Yan subprocess. We give also quantitatively the
analysis of the effects from both the mass of sneutrino and coupling strength
of the R-parity violating interactions.Comment: 18 pages, 10 figures, accepted by Phys. Rev.
Spectral Line Removal in the LIGO Data Analysis System (LDAS)
High power in narrow frequency bands, spectral lines, are a feature of an
interferometric gravitational wave detector's output. Some lines are coherent
between interferometers, in particular, the 2 km and 4 km LIGO Hanford
instruments. This is of concern to data analysis techniques, such as the
stochastic background search, that use correlations between instruments to
detect gravitational radiation. Several techniques of `line removal' have been
proposed. Where a line is attributable to a measurable environmental
disturbance, a simple linear model may be fitted to predict, and subsequently
subtract away, that line. This technique has been implemented (as the command
oelslr) in the LIGO Data Analysis System (LDAS). We demonstrate its application
to LIGO S1 data.Comment: 11 pages, 5 figures, to be published in CQG GWDAW02 proceeding
Recent results on the search for continuous sources with LIGO and GEO600
An overview of the searches for continuous gravitational wave signals in LIGO
and GEO 600 performed on different recent science runs and results are
presented. This includes both searching for gravitational waves from known
pulsars as well as blind searches over a wide parameter space.Comment: TAUP2005 Proceedings to be published in Journal of Physics:
Conference Serie
The Loudest Event Statistic: General Formulation, Properties and Applications
The use of the loudest observed event to generate statistical statements
about rate and strength has become standard in searches for gravitational waves
from compact binaries and pulsars. The Bayesian formulation of the method is
generalized in this paper to allow for uncertainties both in the background
estimate and in the properties of the population being constrained. The method
is also extended to allow rate interval construction. Finally, it is shown how
to combine the results from multiple experiments and a comparison is drawn
between the upper limit obtained in a single search and the upper limit
obtained by combining the results of two experiments each of half the original
duration. To illustrate this, we look at an example case, motivated by the
search for gravitational waves from binary inspiral.Comment: 11 pages, 8 figure
- …