182 research outputs found

    Resummation of QCD Corrections to the eta_c Decay Rate

    Full text link
    We examine the ratio of the decay rate of the eta_c into light hadrons to the decay rate into photons and find that most of the large next-to-leading-order (NLO) correction is associated with running of the strong coupling alpha_s. We resum such contributions by analyzing final-state chains of vacuum-polarization bubbles. We show that the nonperturbative parts of the bubble chains can be absorbed into a color-octet matrix element, once one has used contour deformations of the phase-space integrals to cancel certain contributions. We argue that these contributions are incompatible with the uncertainty principle. We also argue that perturbation theory is reliable only if one carries out the phase-space integrations before the perturbation summation. Our results are in good agreement with experiment and differ considerably from those that one obtains by applying the scale-setting method of Brodsky, Lepage, and Mackenzie to the NLO result.Comment: 41 pages, REVTEX, corrected minor typos in tex

    Finite gravitational action for higher derivative and stringy gravities

    Get PDF
    We generalize the local surface counterterm prescription suggested in Einstein gravity for higher derivative (HD) and Weyl gravities. Explicitly, the surface counterterm is found for three- and five-dimensional HD gravities. As a result, the gravitational action for asymptotically AdS spaces is finite and gravitational energy-momentum tensor is well-defined. The holographic trace anomaly for d2 and d4 boundary (gauge) QFT dual to above HD gravity is calculated from gravitational energy-momentum tensor. The calculation of AdS black hole mass in HD gravity is presented within above prescrition. The comparison with the standard prescription (using reference spacetime) is done.Comment: LaTeX file, 21 page

    B Production Asymmetries in Perturbative QCD

    Get PDF
    This paper explores a new mechanism for B production in which a b quark combines with a light parton from the hard-scattering process before hadronizing into the B hadron. This recombination mechanism can be calculated within perturbative QCD up to a few nonperturbative constants. Though suppressed at large transverse momentum by a factor Lambda_QCD m_b/p_t^2 relative to b quark fragmentation production, it can be important at large rapidities. A signature for this heavy-quark recombination mechanism in proton-antiproton colliders is the presence of rapidity asymmetries in B cross sections. Given reasonable assumptions about the size of nonperturbative parameters entering the calculation, we find that the asymmetries are only significant for rapidities larger than those currently probed by collider experiments.Comment: 17 pages, LaTeX, 4 ps figures, tightenlines, sections added, final version accepted for publication in Phys. Rev.

    Energy Flow in Interjet Radiation

    Get PDF
    We study the distribution of transverse energy, Q_Omega, radiated into an arbitrary interjet angular region, Omega, in high-p_T two-jet events. Using an approximation that emphasizes radiation directly from the partons that undergo the hard scattering, we find a distribution that can be extrapolated smoothly to Q_Omega=Lambda_QCD, where it vanishes. This method, which we apply numerically in a valence quark approximation, provides a class of predictions on transverse energy radiated between jets, as a function of jet energy and rapidity, and of the choice of the region Omega in which the energy is measured. We discuss the relation of our approximation to the radiation from unobserved partons of intermediate energy, whose importance was identified by Dasgupta and Salam.Comment: 26 pages, 8 eps figures. Revised to include a discussion of non-global logarithm

    Negative Energy in String Theory and Cosmic Censorship Violation

    Full text link
    We find asymptotically anti de Sitter solutions in N=8 supergravity which have negative total energy. This is possible since the boundary conditions required for the positive energy theorem are stronger than those required for finite mass (and allowed by string theory). But stability of the anti de Sitter vacuum is still ensured by the positivity of a modified energy, which includes an extra surface term. Some of the negative energy solutions describe classical evolution of nonsingular initial data to naked singularities. Since there is an open set of such solutions, cosmic censorship is violated generically in supergravity. Using the dual field theory description, we argue that these naked singularities will be resolved in the full string theory.Comment: 23 pages, 2 figures, v2: argument for forming naked singularities clarified, references adde

    Associated Production of Heavy Quarkonia and Electroweak Bosons at Present and Future Colliders

    Get PDF
    We investigate the associated production of heavy quarkonia, with angular-momentum quantum numbers ^{2S+1}L_J = ^1S_0, ^3S_1, ^1P_1, ^3P_J (J = 0, 1, 2), and photons, Z bosons, and W bosons in photon-photon, photon-hadron, and hadron-hadron collisions within the factorization formalism of nonrelativistic quantum chromodynamics providing all contributing partonic cross sections in analytic form. In the case of photoproduction, we also include the resolved-photon contributions. We present numerical results for the processes involving J/psi and chi_{cJ} mesons appropriate for the Fermilab Tevatron, CERN LHC, DESY TESLA, operated in the e^+ e^- and gamma gamma modes, and DESY THERA.Comment: 41 pages (Latex), 10 figures (Postscript

    Asymptotic distribution of quasi-normal modes for Kerr-de Sitter black holes

    Full text link
    We establish a Bohr-Sommerfeld type condition for quasi-normal modes of a slowly rotating Kerr-de Sitter black hole, providing their full asymptotic description in any strip of fixed width. In particular, we observe a Zeeman-like splitting of the high multiplicity modes at a=0 (Schwarzschild-de Sitter), once spherical symmetry is broken. The numerical results presented in Appendix B show that the asymptotics are in fact accurate at very low energies and agree with the numerical results established by other methods in the physics literature. We also prove that solutions of the wave equation can be asymptotically expanded in terms of quasi-normal modes; this confirms the validity of the interpretation of their real parts as frequencies of oscillations, and imaginary parts as decay rates of gravitational waves.Comment: 66 pages, 6 figures; journal version (to appear in Annales Henri Poincar\'e

    Fragmentation Function and Hadronic Production of the Heavy Supersymmetric Hadrons

    Full text link
    The light top-squark \sto may be the lightest squark and its lifetime may be `long enough' in a kind of SUSY models which have not been ruled out yet experimentally, so colorless `supersymmetric hadrons (superhadrons)' (\sto \bar{q}) (qq is a quark except tt-quark) may be formed as long as the light top-squark \sto can be produced. Fragmentation function of \sto to heavy `supersymmetric hadrons (superhadrons)' (\sto \bar{Q}) (Qˉ=cˉ\bar{Q}=\bar{c} or bˉ\bar{b}) and the hadronic production of the superhadrons are investigated quantitatively. The fragmentation function is calculated precisely. Due to the difference in spin of the SUSY component, the asymptotic behavior of the fragmentation function is different from those of the existent ones. The fragmentation function is also applied to compute the production of heavy superhadrons at hadronic colliders Tevatron and LHC under the so-called fragmentation approach. The resultant cross-section for the heavy superhadrons is too small to observe at Tevatron, but great enough at LHC, even when all the relevant parameters in the SUSY models are taken within the favored region for the heavy superhadrons. The production of `light superhadrons' (\sto \bar{q}) (q=u,d,sq=u, d, s) is also roughly estimated. It is pointed out that the production cross-sections of the light superhadrons (\sto \bar{q}) may be much greater than those of the heavy superhadrons, so that even at Tevatron the light superhadrons may be produced in great quantities.Comment: 20 pages, 9 figure

    Associated Production of Bottomonia and Higgs Bosons at Hadron Colliders

    Full text link
    We study the associated production of bottomonia and Higgs bosons at hadron colliders within the factorization formalism of nonrelativistic quantum chromodynamics providing all contributing partonic cross sections in analytic form. While such processes tend to be suppressed in the standard model, they may have interesting cross sections in its minimal supersymmetric extension, especially at large values of tan(beta), where the bottom Yukawa couplings are enhanced. We present numerical results for the processes involving the lighter CP-even h^0 boson and the CP-odd A^0 boson appropriate for the Fermilab Tevatron and the CERN LHC.Comment: 33 pages, 7 figures, Latex, to appear in Phys. Rev.

    Surface Terms as Counterterms in the AdS/CFT Correspondence

    Get PDF
    We examine the recently proposed technique of adding boundary counterterms to the gravitational action for spacetimes which are locally asymptotic to anti-de Sitter. In particular, we explicitly identify higher order counterterms, which allow us to consider spacetimes of dimensions d<=7. As the counterterms eliminate the need of ``background subtraction'' in calculating the action, we apply this technique to study examples where the appropriate background was ambiguous or unknown: topological black holes, Taub-NUT-AdS and Taub-Bolt-AdS. We also identify certain cases where the covariant counterterms fail to render the action finite, and we comment on the dual field theory interpretation of this result. In some examples, the case of vanishing cosmological constant may be recovered in a limit, which allows us to check results and resolve ambiguities in certain asymptotically flat spacetime computations in the literature.Comment: Revtex, 18 pages. References updated and few typo's fixed. Final versio
    • …
    corecore