12,723 research outputs found

    An evaluation of the NASA Tech House, including live-in test results, volume 1

    Get PDF
    The NASA Tech House was designed and constructed at the NASA Langley Research Center, Hampton, Virginia, to demonstrate and evaluate new technology potentially applicable for conservation of energy and resources and for improvements in safety and security in a single-family residence. All technology items, including solar-energy systems and a waste-water-reuse system, were evaluated under actual living conditions for a 1 year period with a family of four living in the house in their normal lifestyle. Results are presented which show overall savings in energy and resources compared with requirements for a defined similar conventional house under the same conditions. General operational experience and performance data are also included for all the various items and systems of technology incorporated into the house design

    Perturbative Expansion around the Gaussian Effective Action: The Background Field Method

    Get PDF
    We develop a systematic method of the perturbative expansion around the Gaussian effective action based on the background field method. We show, by applying the method to the quantum mechanical anharmonic oscillator problem, that even the first non-trivial correction terms greatly improve the Gaussian approximation.Comment: 16 pages, 3 eps figures, uses RevTeX and epsf. Errors in Table 1 are corrected and new references are adde

    Preheating, Supersymmetry Breaking and Baryogenesis

    Get PDF
    Fluctuations of scalar fields produced at the stage of preheating after inflation are so large that they can break supersymmetry much stronger than inflation itself. These fluctuations may lead to symmetry restoration along flat directions of the effective potential even in the theories where the usual high temperature corrections are exponentially suppressed. Our results show that nonthermal phase transitions after preheating may play a crucial role in the generation of the primordial baryon asymmetry by the Affleck-Dine mechanism. In particular, the baryon asymmetry may be generated at the very early stage of the evolution of the Universe, at the preheating era, and not when the Hubble parameter becomes of order the gravitino mass.Comment: 4 pages, no figure

    Infrared Behaviour of Systems With Goldstone Bosons

    Full text link
    We develop various complementary concepts and techniques for handling quantum fluctuations of Goldstone bosons.We emphasise that one of the consequences of the masslessness of Goldstone bosons is that the longitudinal fluctuations also have a diverging susceptibility characterised by an anomalous dimension (d2)(d-2) in space-time dimensions 2<d<42<d<4.In d=4d=4 these fluctuations diverge logarithmically in the infrared region.We show the generality of this phenomenon by providing three arguments based on i). Renormalization group flows, ii). Ward identities, and iii). Schwinger-Dyson equations.We obtain an explicit form for the generating functional of one-particle irreducible vertices of the O(N) (non)--linear σ\sigma--models in the leading 1/N approximation.We show that this incorporates all infrared behaviour correctly both in linear and non-linear σ\sigma-- models. Our techniques provide an alternative to chiral perturbation theory.Some consequences are discussed briefly.Comment: 28 pages,2 Figs, a new section on some universal features of multipion processes has been adde

    Dissipation in equations of motion of scalar fields

    Get PDF
    The methods of non-equilibrium quantum field theory are used to investigate the possibility of representing dissipation in the equation of motion for the expectation value of a scalar field by a friction term, such as is commonly included in phenomenological inflaton equations of motion. A sequence of approximations is exhibited which reduces the non-equilibrium theory to a set of local evolution equations. However, the adiabatic solution to these evolution equations which is needed to obtain a local equation of motion for the expectation value is not well defined; nor, therefore, is the friction coefficient. Thus, a non-equilibrium treatment is essential, even for a system that remains close to thermal equilibrium, and the formalism developed here provides one means of achieving this numerically.Comment: 17 pages, 5 figure

    Calculation of Particle Production by Nambu Goldstone Bosons with Application to Inflation Reheating and Baryogenesis

    Full text link
    A semiclassical calculation of particle production by a scalar field in a potential is performed. We focus on the particular case of production of fermions by a Nambu-Goldstone boson θ\theta. We have derived a (non)local equation of motion for the θ\theta-field with the backreaction of the produced particles taken into account. The equation is solved in some special cases, namely for purely Nambu-Goldstone bosons and for the tilted potential U(θ)m2θ2 U(\theta ) \propto m^2 \theta^2 . Enhanced production of bosons due to parametric resonance is investigated; we argue that the resonance probably disappears when the expansion of the universe is included. Application of our work on particle production to reheating and an idea for baryogenesis in inflation are mentioned.Comment: Submitted to Physical Review {\rm D}: October 4, 1994 21 page, UM-AC 94-3

    Enhanced baryon number violation due to cosmological defects with localized fermions along extra dimension

    Full text link
    We propose a new scenario of baryon number violation in models with extra dimensions. In the true vacuum, baryon number is almost conserved due to the localization mechanism of matter fields, which suppresses the interactions between quarks and leptons. We consider several types of cosmological defects in four-dimensional spacetime that shift the center of the localized matter fields, and show that the magnitudes of the baryon number violating interactions are well enhanced. Application to baryogenesis is also discussed.Comment: 12pages, latex2e, added references, to appear in PR

    Non-transversality of the gluon polarization tensor in a chromomagnetic background

    Full text link
    We investigate the question about the transversality of the gluon polarization tensor in a homogeneous chromomagnetic background field. We re-derive the non transversality known from a pure one loop calculation using the Slavnov-Taylor identities. In addition we generalize the procedure to arbitrary gauge fixing parameter ξ\xi and calculate the ξ\xi-dependent part of the polarization tensor.Comment: subm. to TM

    Systematic Study of the Kaon to Pion Multiplicity Ratios in Heavy-Ion Collisions

    Get PDF
    We present a systematic study of the kaon to pion multiplicity ratios (K+/pi+ and K-/pi-) in heavy-ion collisions from AGS to RHIC energy using the Relativistic Quantum Molecular Dynamics (RQMD) model. The model satisfactorily describes the available experimental data on K+/pi+ and K-/pi-. Within the model, we find that the strong increase of the ratios with the number of participants is mainly due to hadronic rescattering of produced mesons with ingoing baryons and their resonances. The enhancement of K/pi in heavy-ion collisions with respect to elementary p+p interactions is larger at AGS energy than SPS energy, and decreases smoothly with bombarding energy. The total multiplicity ratios at RHIC energy are predicted by RQMD to be K+/pi+ = 0.19 and K-/pi- = 0.15.Comment: 10 pages, 8 figures, RevTeX style. A section is added to discuss effects of rope formatio

    Searching for prompt signatures of nearby core-collapse supernovae by a joint analysis of neutrino and gravitational-wave data

    Get PDF
    We discuss the science motivations and prospects for a joint analysis of gravitational-wave (GW) and low-energy neutrino data to search for prompt signals from nearby supernovae (SNe). Both gravitational-wave and low-energy neutrinos are expected to be produced in the innermost region of a core-collapse supernova, and a search for coincident signals would probe the processes which power a supernova explosion. It is estimated that the current generation of neutrino and gravitational-wave detectors would be sensitive to Galactic core-collapse supernovae, and would also be able to detect electromagnetically dark SNe. A joint GW-neutrino search would enable improvements to searches by way of lower detection thresholds, larger distance range, better live-time coverage by a network of GW and neutrino detectors, and increased significance of candidate detections. A close collaboration between the GW and neutrino communities for such a search will thus go far toward realizing a much sought-after astrophysics goal of detecting the next nearby supernova.Comment: 10 pages, 3 figures. To appear in Class. Quantum Gra
    corecore