86 research outputs found

    A space division multiplexed free-space-optical communication system that can auto-locate and fully self align with a remote transceiver

    Get PDF
    Free-Space Optical (FSO) systems offer the ability to distribute high speed digital links into remote and rural communities where terrain, installation cost or infrastructure security pose critical hurdles to deployment. A challenge in any point-to-point FSO system is initiating and maintaining optical alignment from the sender to the receiver. In this paper we propose and demonstrate a low-complexity self-aligning FSO prototype that can completely self-align with no requirement for initial manual positioning and could therefore form the opto-mechanical basis for a mesh network of optical transceivers. The prototype utilises off-the-shelf consumer electrical components and a bespoke alignment algorithm. We demonstrate an eight fibre spatially multiplexed link with a loss of 15 dB over 210 m

    Experimental Investigation of the Effects of Fog on Optical Camera-based VLC for a Vehicular Environment

    Get PDF
    The widespread increase in the use of light emitting diodes in vehicle’s head and taillights and also the use of dashboard cameras provides great prospects for the optical camera based visible light communications (VLC) technology in intelligent transport systems. In this paper, we experimentally investigate the impact of fog on the optical camera based VLC technology for vehicle-to-vehicle (V2V) communications. A range of meteorological visibilities between 5–120 m is considered based on realistic inter-vehicle distances in practical vehicular environments and using a real car taillight as the transmitter. We show a reduction in the index of modulation of the signals from 1 to 0.75 and 0.5 to allow for tracking purposes of the light source when sending ‘0’ symbols. The results show that, the link is error-free up to 20 m meteorological visibility for the three modulation index scenarios and degrades considerably below 10 m meteorological visibility

    Fog Mitigation Using SCM and Lens in FSO Communications

    Get PDF
    A free space optical (FSO)communications link performance is highly affected by the atmospheric conditions. This paper compares the effectiveness of employing a spherical concave mirror (SCM)and a convex lens at the receiver to compensate for the effect of fog in FSO communication links. The results show that, for the fog induced signal attenuation lower than 9.17dB there is a marginal improvement in the FSO link performance in terms of the Q-factor by a maximum of 8% when using an SCM at the receiver compared with a regular lens

    Differential Signalling in Free-Space Optical Communication Systems

    Get PDF
    In this paper, we review the differential signalling technique and investigate its implementation of in free-space optical (FSO) communication systems. The paper is an extended version of our previous works, where the effects of background noise, weak turbulence and pointing errors (PEs) were investigated separately. Here, for the first time, we present a thorough description of the differential signalling scheme including for combined effects. At first, we present an extension of the analysis of differential signalling to the case of moderate to strong atmospheric turbulence. Next, we investigate a more general case where both channel turbulence and PEs are taken into consideration. We provide closed-form expressions for the optimal detection threshold and the average bit-error-rate, and present a set of numerical results to illustrate the performance improvement offered by the proposed differential signalling under various turbulence and PEs conditions

    Implementation and Evaluation of a Gigabit Ethernet FSO Link for 'The Last Metre and Last Mile Access Network'

    Get PDF
    In this paper, we propose a simple and a low cost 1 Gbps Ethernet free-space optical (FSO) communications link, which can be used both for the last meter and last mile access networks. In the emerging fifth generation wireless systems, which require at least an order of magnitude increase in the peak data rates and three orders of magnitude increase in network capacity with reduced latency, deploying multiple technologies will play a crucial role to meet these requirements. One possible complementary wireless technology to the radio frequency is the unlicensed FSO, which can bridge the gap between the existing RF wireless and optical fibre communication networks by providing high data rates, low installation costs and high energy efficiency. In this work, we propose a high-speed FSO system, which can be readily implemented using off the shelf components, and assess its performance experimentally under turbulence and fog conditions using the dedicated indoor atmospheric chamber. We show that, the proposed system under the turbulence condition with a scintillation index of 0.43 offers almost the same data rate (i.e., ∼99%) as the link under a clear channel, while the packeterror-rate reduces from 10−3 to 2 × 10−2

    A Head/Taillight Featuring Hybrid Planar Visible Light Communications/Millimetre Wave Antenna for Vehicular Communications

    Get PDF
    With the emergence of the fifth generation and beyond mobile networks, both visible light communications (VLC) and radio frequency (RF) or millimetre wave (mmW) systems are expected to maintain the connectivity in various environments. In outdoor environments the link (VLC or RF) availability is paramount, which is affected by channel conditions. In particular, in vehicular communications other vehicles, harsh environment, and road geometry and structure will have the impact on the link connectivity and availability. In such cases, a front-end antenna solution, which benefits both optical and RF communication links, can be seen as an attractive option that can be fitted in future vehicles. In this paper, we present the design and practical implementation of a planar hybrid VLC/mmW antenna operating at 20.8 GHz and show measured results for characterization of RF and VLC links as well as communications performance. We have used the widely adopted on-off keying and quadrature amplitude modulation schemes with different orders to demonstrate data rates of 5 Mb/s and up to 100 Mb/s for the VLC and mmW links, respectively. By measuring the bit error rate and the error vector magnitude for VLC and Rf links, respectively for each modulation we have shown that the proposed hybrid planar antenna is suitable for example in a typical vehicle -to-vehicle communications

    Impact of Link Parameters and Channel Correlation on the Performance of FSO Systems With the Differential Signaling Technique

    Get PDF
    We investigate the effects of link parameters and the channel correlation coefficient on the detection threshold, Q-factor, and bit-error-rate (BER) of a free-space optical system employing a differential signaling scheme. In systems employing differential signaling schemes, the mean value of the signal is used as the detection threshold level, provided that differential links are identical or highly correlated. However, in reality, the underlying links are not essentially identical and have a low level of correlation. To show the significance of the link parameters as well as the correlation coefficient, we derive analytical relations describing the effect of weak turbulence and we determine the improvement of Q-factor with the channel correlation. Further, for the same signal-to-noise ratio, we demonstrate that a link with a higher extinction ratio offers improved performance. We also propose a closed-form expression of the system BER. We present experimental results showing improved Q-factor for the correlated channel case compared to the uncorrelated channel

    Communication characteristics of high-brightness light sources based on luminescence concentration

    Get PDF
    Communication characteristics of high-brightness solid-state light sources based on luminescence concentration generated using blue emitting InGaN light emitting diode arrays are demonstrated here for the first time. The proposed device is used as a transmitter in visible light communications, and its performance is evaluated

    DeepRetroMoCo:deep neural network-based retrospective motion correction algorithm for spinal cord functional MRI

    Get PDF
    Background and purpose: There are distinct challenges in the preprocessing of spinal cord fMRI data, particularly concerning the mitigation of voluntary or involuntary movement artifacts during image acquisition. Despite the notable progress in data processing techniques for movement detection and correction, applying motion correction algorithms developed for the brain cortex to the brainstem and spinal cord remains a challenging endeavor.Methods: In this study, we employed a deep learning-based convolutional neural network (CNN) named DeepRetroMoCo, trained using an unsupervised learning algorithm. Our goal was to detect and rectify motion artifacts in axial T2*-weighted spinal cord data. The training dataset consisted of spinal cord fMRI data from 27 participants, comprising 135 runs for training and 81 runs for testing.Results: To evaluate the efficacy of DeepRetroMoCo, we compared its performance against the sct_fmri_moco method implemented in the spinal cord toolbox. We assessed the motion-corrected images using two metrics: the average temporal signal-to-noise ratio (tSNR) and Delta Variation Signal (DVARS) for both raw and motion-corrected data. Notably, the average tSNR in the cervical cord was significantly higher when DeepRetroMoCo was utilized for motion correction, compared to the sct_fmri_moco method. Additionally, the average DVARS values were lower in images corrected by DeepRetroMoCo, indicating a superior reduction in motion artifacts. Moreover, DeepRetroMoCo exhibited a significantly shorter processing time compared to sct_fmri_moco.Conclusion: Our findings strongly support the notion that DeepRetroMoCo represents a substantial improvement in motion correction procedures for fMRI data acquired from the cervical spinal cord. This novel deep learning-based approach showcases enhanced performance, offering a promising solution to address the challenges posed by motion artifacts in spinal cord fMRI data
    • …
    corecore