5,632 research outputs found

    Astrometry with "Carte du Ciel" plates, San Fernando zone. I. Digitization and measurement using a flatbed scanner

    Full text link
    We present an original method of digitizing and astrometrically reducing "Carte du Ciel" plate material using an inexpensive flatbed scanner, to demonstrate that for this material there is an alternative to more specialized measuring machines that are very few in number and thus not readily available. The sample of plates chosen to develop this method are original "Carte du Ciel" plates of the San Fernando zone, photographic material with a mean epoch 1903.6, and a limiting photographic magnitude ~14.5, covering the declination range of -10 < dec < -2. Digitization has been made using a commercial flatbed scanner, demonstrating the internal precision that can be attained with such a device. A variety of post-scan corrections are shown to be necessary. In particular, the large distortion introduced by the non-uniform action of the scanner is modelled using multiple scans of each plate. We also tackle the specific problems associated with the triple-exposure images on some plates and the grid lines present on all. The final measures are reduced to celestial coordinates using the Tycho-2 Catalogue. The internal precision obtained over a single plate, 3microns ~ 0.18" in each axis, is comparable to what is realized with similar plate material using slower, less affordable, and less widely available conventional measuring machines, such as a PDS microdensitometer. The accuracy attained over large multi-plate areas, employing an overlapping plate technique, is estimated at 0.2".Comment: 16 pages, 19 figures and 3 tables. Accepted for publication in A&

    A Vaccine Against Group B Streptococcus: Recent Advances

    Get PDF
    Group B streptococcus (GBS) causes a high burden of neonatal and infant disease globally. Implementing a vaccine for pregnant women is a promising strategy to prevent neonatal and infant GBS disease and has been identified as a priority by the World Health Organisation (WHO). GBS serotype-specific polysaccharide – protein conjugate vaccines are at advanced stages of development, but a large number of participants would be required to undertake Phase III clinical efficacy trials. Efforts are therefore currently focused on establishing serocorrelates of protection in natural immunity studies as an alternative pathway for licensure of a GBS vaccine, followed by Phase IV studies to evaluate safety and effectiveness. Protein vaccines are in earlier stages of development but are highly promising as they might confer protection irrespective of serotype. Further epidemiological, immunological and health economic studies are required to enable the vaccine to reach its target population as soon as possible

    A multi-scale approach to laminated microbial deposits in non-marine carbonate environments through examples of the Cenozoic, north-east Iberian Peninsula, Spain

    Get PDF
    This contribution focusses on stromatolites and oncolites as tools to seek diverse environmental and climate information at different temporal scales. The scales are: (a) Low frequency, dealing with macroscopic and megascopic scales, and (b) high frequency, involving calendar and solar frequency bands. Two depositional environments are used for this purpose: (a) Fluvial and fluvial–lacustrine, which can develop under high to moderate gradients, and in low-gradient conditions, and (b) lacustrine, subject to low-gradient, hydrologically closed lake conditions. Several current and ancient examples in the Iberian Peninsula allow high-frequency and low-frequency analyses. Within the wedge-shaped depositional units that fill the high- to moderate-gradient, stepped fluvial systems, stromatolites form half domes and lenticular bodies, commonly at the wedge front. Oncolites are uncommon. These stromatolites developed in moderate to fast-flowing water in stepped cascades and rapids. Their geometry and extent reflect the topography of the bedrock and later ongoing growth. In low-gradient fluvial and fluvial-(open) lacustrine systems the depositional units are tabular, low-angle wedge-shaped and lenticular and have great spatial facies variability. The dominant oncoid and coated-stem limestones form gently lenticular stacked bodies, developed in wide, low to high-sinuosity channels within wide tufaceous palustrine areas and small lakes. In the Ebro Basin saline carbonate lacustrine systems, stromatolites form thin planar to domed and stratiform bodies and are associated with muddy-grainy laminated carbonates and very rare oncolites, together forming ramp-shaped units that represent the inner fringes of high lake-level deposits. This geometry reflects low-gradient lake surface and shallow water conditions. Textural and structural features allow different ranks of laminae and types of lamination to be distinguished. Texture, together with the d13C and d18O values of consecutive laminae, are useful in distinguishing environmental and climate changes operating over different time spans. Periodicity analysis of lamination can help to discern any temporal significance in the lamination. © 2021 The Authors. The Depositional Record published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologists

    Excitations and S-matrix for su(3) spin chain combining 3{3} and ${3^{*}}

    Full text link
    The associated Hamiltonian for a su(3) spin chain combining 3{3} and 3{3^{*}} representations is calculated. The ansatz equations for this chain are obtained and solved in the thermodynamic limit, and the ground state and excitations are described. Thus, relations between the number of roots and the number of holes in each level have been found . The excited states are characterized by means of these quantum numbers. Finally, the exact S matrix for a state with two holes is found.Comment: 17 pages, plaintex, harvmac (to be published in J. of Phys. A

    Didactic strategies for comprehension and learning of structural concepts

    Full text link
    p. 926-937In previous papers we have established the convenience of formulating educational strategies at the university level for both disciplines: Civil Engineering and Architecture, which involves academic topics of mutual interest by means of shared practices. As a particular matter of this approach, the application of physical experimental models is considered of special usefulness, in order to understand in better ways the performance of materials and structural systems. Several strategies of selection and development of such physical models will be discussed in this work, considering as a first step, the establishment of its correspondence with the different levels of structural complexity studied in curriculum plan: statics, strength of materials and structural design, among others. This task constitutes a part of the work program of the Laboratory of Structural Models, which is an academic project that develops and applies different didactic prototypes to structure courses in the Universidad Autónoma Metropolitana, campus Azcapotzalco, in Mexico City, project we have already presented in recent forums. Two different modes of application are implemented in classroom sessions and in structures workshop: the devices for functional demonstration of typical cases of structural work as well as the experimentation with student's own designs of destructible models where certain typologies are tested up to its failure limit. The first one allows teachers to explain adequately the theoretical principles and formulas (that usually are expressed on the blackboard) by means of didactic models identified in accordance to specific cases of the curriculum on variable level of complexity. This kind of practice allows the students of architecture and civil engineering to realize in better ways the possibilities of use and application of the different structural typologies. Such experimental models are part of more than fifty devices of the Laboratory's catalog. In the same sense, the possibility of observation of structural work of their own architectural designs, allows future professionals to achieve a better conception of the structural solutions that affect positively their designs. Based on specific predefined guides, the students develop their own architectural-structural projects and subject them to diverse loads, observing their behavior under the influence of variable stresses leading up the experiment to its last resistance. From both experiences a significant learning is obtained for the student's formation and training, who will be capable in his future professional work to use better tools of comprehension of the structural concepts applied to architecture as well as of increasing his conscience of the benefits and convenience of multidisciplinary work.Moreno, C.; Abad, A.; Gerdingh, JG.; Garcia M., C.; Gonzalez C., O. (2010). Didactic strategies for comprehension and learning of structural concepts. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/695
    corecore