15 research outputs found

    Successful Amplification of DNA Specific for Finnish Borrelia burgdorferi Isolates in Erythema Chronicum Migrans but Not in Circumscribed Scleroderma Lesions

    Get PDF
    Early diagnosis of Borrelia burgdorferi infection, hampered by the absence of detectable antibodies in most patients with erythema chronicum migrans is important to prevent late-stage neurologic, rheumatologic, and skin disorders. Furthermore, B. burgdorferi has been claimed to be the causative agent in localized scleroderma (morphea). We used PCR amplification to search for B. burgdorferi outer surface protein OspA–specific sequences in DNA obtained from lesional skin biopsies on Finnish patients with clinically suspect erythema chronicum migrans, lymphocytoma, morphea, or with diverse skin manifestations and persistent high antibodies to B. burgdorferi flagellar antigen. Seronegative patients with other skin lesions served as controls. The amplicons obtained with primers specific for B. burgdorferi type strain B31 ospA sequence did not hybridize to the corresponding probes, and thus the DNA amplified from a Finnish B. burgdorferi erythema chronicum migrans skin isolate was sequenced. This 98-nucleotide sequence of ospA (332–429) showed 11% to 14% nucleotide divergence compared with the North American type strain (B31), several European strains, and an East Siberian tick strain. The sequence was almost identical (99%) to a Swedish isolate from acrodermatitis chronica atrophicans. Using oligonucleotides specific for the Finnish strain, a positive polymerase chain reaction – based hybridization was obtained in six of seven untreated erythema chronicum migrans patients infected in Finland or in Estonia, and in the lymphocytoma patient. Only two of the erythema chronicum migrans patients had IgG or IgM antibodies to flagellin. However, all seven morphea lesions as well as the other lesions were polymerase chain reaction negative. Polymerase chain reaction – based hybridization ofB. burgdoferi OspA gene from skin-derived DNA thus provides a sensitive and specific diagnostic tool. In conditions not unequivocally known to be caused by B. burgdorferi in morphea, this assay was negative. We also demonstrate that peri-Baltic B. burgdorferi isolates show homology in their OspA genes but differ from geographically more distant isolates

    Transcriptional Profiling of Hypoxia-Regulated Non-coding RNAs in Human Primary Endothelial Cells

    Get PDF
    Hypoxia occurs in human atherosclerotic lesions and has multiple adverse effects on endothelial cell metabolism. Recently, key roles of long non-coding RNAs (lncRNAs) in the development of atherosclerosis have begun to emerge. In this study, we investigate the lncRNA profiles of human umbilical vein endothelial cells subjected to hypoxia using global run-on sequencing (GRO-Seq). We demonstrate that hypoxia regulates the nascent transcription of ~1800 lncRNAs. Interestingly, we uncover evidence that promoter-associated lncRNAs are more likely to be induced by hypoxia compared to enhancer-associated lncRNAs, which exhibit an equal distribution of up- and downregulated transcripts. We also demonstrate that hypoxia leads to a significant induction in the activity of super-enhancers next to transcription factors and other genes implicated in angiogenesis, cell survival and adhesion, whereas super-enhancers near several negative regulators of angiogenesis were repressed. Despite the majority of lncRNAs exhibiting low detection in RNA-Seq, a subset of lncRNAs were expressed at comparable levels to mRNAs. Among these, MALAT1, HYMAI, LOC730101, KIAA1656, and LOC339803 were found differentially expressed in human atherosclerotic lesions, compared to normal vascular tissue, and may thus serve as potential biomarkers for lesion hypoxia

    Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci

    Get PDF
    Rationale: Genome-wide association studies have identified hundreds of loci associated with coronary artery disease (CAD). Many of these loci are enriched in cisregulatory elements but not linked to cardiometabolic risk factors nor to candidate causal genes, complicating their functional interpretation. Objective: Single-nucleus chromatin accessibility profiling of the human atherosclerotic lesions was used to investigate cell type-specific patterns of cisregulatory elements, to understand transcription factors establishing cell identity, and to interpret CAD-relevant, noncoding genetic variation. Methods and Results: We used single-nucleus ATAC-seq (assay for transposase-accessible chromatin with sequencing) to generate DNA accessibility maps in >7000 cells derived from human atherosclerotic lesions. We identified 5 major lesional cell types including endothelial cells, smooth muscle cells, monocyte/macrophages, natural killer/T cells, and B cells and further investigated subtype characteristics of macrophages and smooth muscle cells transitioning into fibromyocytes. We demonstrated that CAD-associated genetic variants are particularly enriched in endothelial and smooth muscle cell-specific open chromatin. Using single-cell coaccessibility and cis-expression quantitative trait loci information, we prioritized putative target genes and candidate regulatory elements for approximate to 30% of all known CAD loci. Finally, we performed genome-wide experimental fine-mapping of the CAD variants identified in genome-wide association studies using epigenetic quantitative trait loci analysis in primary human aortic endothelial cells and self-transcribing active regulatory region sequencing (STARR-Seq) massively parallel reporter assay in smooth muscle cells. This analysis identified potential causal single-nucleotide polymorphisms (SNPs) and the associated target gene for over 30 CAD loci. We present several examples where the chromatin accessibility and gene expression could be assigned to one cell type predicting the cell type of action for CAD loci. Conclusions: These findings highlight the potential of applying single-nucleus ATAC-seq to human tissues in revealing relative contributions of distinct cell types to diseases and in identifying genes likely to be influenced by noncoding genome-wide association study variants.</p

    Dissecting the polygenic basis of atherosclerosis via disease-associated cell state signatures

    Get PDF
    Coronary artery disease (CAD) is a pandemic disease where up to half of the risk is explained by genetic factors. Advanced insights into the genetic basis of CAD require deeper understanding of the contributions of different cell types, molecular pathways, and genes to disease heritability. Here, we investigate the biological diversity of atherosclerosis-associated cell states and interrogate their contribution to the genetic risk of CAD by using single-cell and bulk RNA sequencing (RNA-seq) of mouse and human lesions. We identified 12 disease-associated cell states that we characterized further by gene set functional profiling, ligand-receptor prediction, and transcription factor inference. Importantly, Vcam1+ smooth muscle cell state genes contributed most to SNP-based heritability of CAD. In line with this, genetic variants near smooth muscle cell state genes and regulatory elements explained the largest fraction of CAD-risk variance between individuals. Using this information for variant prioritization, we derived a hybrid polygenic risk score (PRS) that demonstrated improved performance over a classical PRS. Our results provide insights into the biological mechanisms associated with CAD risk, which could make a promising contribution to precision medicine and tailored therapeutic interventions in the future.publishedVersionPeer reviewe

    Microanatomy of the Human Atherosclerotic Plaque by Single-Cell Transcriptomics

    Get PDF
    Rationale:Atherosclerotic lesions are known for their cellular heterogeneity, yet the molecular complexity within the cells of human plaques has not been fully assessed.Objective:Using single-cell transcriptomics and chromatin accessibility, we gained a better understanding of the pathophysiology underlying human atherosclerosis.Methods and Results:We performed single-cell RNA and single-cell ATAC sequencing on human carotid atherosclerotic plaques to define the cells at play and determine their transcriptomic and epigenomic characteristics. We identified 14 distinct cell populations including endothelial cells, smooth muscle cells, mast cells, B cells, myeloid cells, and T cells and identified multiple cellular activation states and suggested cellular interconversions. Within the endothelial cell population, we defined subsets with angiogenic capacity plus clear signs of endothelial to mesenchymal transition. CD4(+) and CD8(+) T cells showed activation-based subclasses, each with a gradual decline from a cytotoxic to a more quiescent phenotype. Myeloid cells included 2 populations of proinflammatory macrophages showing IL (interleukin) 1B or TNF (tumor necrosis factor) expression as well as a foam cell-like population expressing TREM2 (triggering receptor expressed on myeloid cells 2) and displaying a fibrosis-promoting phenotype. ATACseq data identified specific transcription factors associated with the myeloid subpopulation and T cell cytokine profiles underlying mutual activation between both cell types. Finally, cardiovascular disease susceptibility genes identified using public genome-wide association studies data were particularly enriched in lesional macrophages, endothelial, and smooth muscle cells.Conclusions:This study provides a transcriptome-based cellular landscape of human atherosclerotic plaques and highlights cellular plasticity and intercellular communication at the site of disease. This detailed definition of cell communities at play in atherosclerosis will facilitate cell-based mapping of novel interventional targets with direct functional relevance for the treatment of human disease

    Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster

    No full text
    Aims: Genetics can explain just above 10% of the observed heritability in cardiovascular diseases. Epigenetics is about to provide some further explanations, but the information needed for that is in the accumulation phase. Genome-wide DNA methylation analysis has revealed thousands of genes, which are epigenetically differentially regulated in atherosclerotic plaques. Our results point to an additional level of complexity that needs to be integrated into the aetiology of atherogenesis.We conducted a genome-wide analysis to identify differentially methylated genes in atherosclerotic lesions. Methods: DNA methylation at promoters, exons and introns was identified by massive parallel sequencing. Gene expression was analysed by microarrays, qPCR, immunohistochemistry and western blots. Results: Globally, hypomethylation of chromosomal DNA predominates in atherosclerotic plaques and two-thirds of genes showing over 2.5-fold differential in DNA methylation are up-regulated in comparison to healthy mammary arteries. The imprinted chromatin locus 14q32 was identified for the first time as an extensively hypomethylated area in atherosclerosis with highly induced expression of miR127, -136, -410, -431, -432, -433 and capillary formation-associated gene RTL1. The top 100 list of hypomethylated promoters exhibited over 1000-fold enrichment for miRNAs, many of which mapped to locus 14q32. Unexpectedly, also gene body hypermethylation was found to correlate with stimulated mRNA expression. Conclusion: Significant changes in genomic methylation were identified in atherosclerotic lesions. The most prominent gene cluster activated via hypomethylation was detected at imprinted chromosomal locus 14q32 with several clustered miRNAs that were up-regulated. These results suggest that epigenetic changes are involved in atherogenesis and may offer new potential therapeutic targets for vascular diseases

    Smoking is Associated to DNA Methylation in Atherosclerotic Carotid Lesions

    No full text
    Background: Tobacco smoking is a major risk factor for atherosclerotic disease and has been associated with DNA methylation (DNAm) changes in blood cells. However, whether smoking influences DNAm in the diseased vascular wall is unknown but may prove crucial in understanding the pathophysiology of atherosclerosis. In this study, we associated current tobacco smoking to epigenome-wide DNAm in atherosclerotic plaques from patients undergoing carotid endarterectomy. Methods: DNAm at commonly methylated sites (cytosine-guanine nucleotide pairs separated by a phospho-group [CpGs]) was assessed in atherosclerotic plaque samples and peripheral blood samples from 485 carotid endarterectomy patients. We tested the association of current tobacco smoking with DNAm corrected for age and sex. To control for bias and inflation because of cellular heterogeneity, we applied a Bayesian method to estimate an empirical null distribution as implemented by the R package bacon. Replication of the smoking-associated methylated CpGs in atherosclerotic plaques was executed in the second sample of 190 carotid endarterectomy patients, and results were meta-analyzed using a fixed-effects model. Results: Tobacco smoking was significantly associated to differential DNAm in atherosclerotic lesions of 4 CpGs (false discovery rate <0.05) mapped to 2 different genes (AHRR, ITPK1) and 17 CpGs mapped to 8 genes and RNAs in blood. The strongest associations were found for CpGs mapped to the gene AHRR, a repressor of the aryl hydrocarbon receptor transcription factor involved in xenobiotic detoxification. One of these methylated CpGs were found to be regulated by local genetic variation. Conclusions: The risk factor tobacco smoking associates with DNAm at multiple loci in carotid atherosclerotic lesions. These observations support further investigation of the relationship between risk factors and epigenetic regulation in atherosclerotic disease
    corecore