8 research outputs found

    Uremia does not affect neointima formation in mice

    Get PDF
    Atherosclerotic cardiovascular disease is a major complication of chronic kidney disease (CKD). CKD leads to uremia, which modulates the phenotype of aortic smooth muscle cells (SMCs). Phenotypic modulation of SMCs plays a key role in accelerating atherosclerosis. We investigated the hypothesis that uremia potentiates neointima formation in response to vascular injury in mice. Carotid wire injury was performed on C57BL/6 wt and apolipoprotein E knockout (Apoe−/−) mice two weeks after induction of uremia by 5/6 nephrectomy. Wire injury led to neointima formation and downregulation of genes encoding classical SMC markers (i.e., myocardin, α-smooth muscle actin, SM22-alpha, and smooth muscle myosin heavy chain) in both wt and Apoe−/− mice. Contrary to our expectations, uremia did not potentiate neointima formation, nor did it affect intimal lesion composition as judged from magnetic resonance imaging and histological analyses. Also, there was no effect of uremia on SMC marker gene expression in the injured carotid arteries, suggesting that there may be different effects of uremia on SMCs in different vascular beds. In conclusion, uremia does not accelerate neointima formation in response to wire injury of the carotid artery in mice.</p

    Uremia modulates the phenotype of aortic smooth muscle cells

    No full text
    Background and aims Chronic kidney disease leads to uremia and markedly accelerates atherosclerosis. Phenotypic modulation of smooth muscle cells (SMCs) in the arterial media plays a key role in accelerating atherogenesis. The aim of this study was to investigate whether uremia per se modulates the phenotype of aortic SMCs in vivo. Methods Moderate uremia was induced by 5/6 nephrectomy in apolipoprotein E knockout (ApoE-/-) and wildtype C57Bl/6 mice. Plasma analysis, gene expression, histology, and myography were used to determine uremia-mediated changes in the arterial wall. Results Induction of moderate uremia in ApoE-/- mice increased atherosclerosis in the aortic arch en face 1.6 fold (p = 0.04) and induced systemic inflammation. Based on histological analyses of aortic root sections, uremia increased the medial area, while there was no difference in the content of elastic fibers or collagen in the aortic media. In the aortic arch, mRNA and miRNA expression patterns were consistent with a uremia-mediated phenotypic modulation of SMCs; e.g. downregulation of myocardin, α-smooth muscle actin, and transgelin; and upregulation of miR146a. Notably, these expression patterns were observed after acute (2 weeks) and chronic (19 and 30 weeks) uremia, both under normo- and hypercholesterolemic settings. Functionally, aortic constriction was decreased in uremic as compared to non-uremic aorta segments, as measured by myography. Conclusions Uremia modulates the phenotype of aortic SMCs as determined by mRNA/miRNA expression, an increased medial area, and decreased aortic contractility. We propose that this phenotypic modulation of SMCs precedes the acceleration of atherosclerosis observed in uremic mice

    Lippia nodiflora Michx.

    Get PDF
    原著和名: イハダレサウ科名: クマツヅラ科 = Verbenaceae採集地: 千葉県 銚子市 黒生町 (下総 銚子市 黒生)採集日: 1987/8/16採集者: 萩庭丈壽整理番号: JH037642国立科学博物館整理番号: TNS-VS-98764

    Integrative transcriptomic profiling of a mouse model of hypertension-accelerated diabetic kidney disease

    No full text
    The current understanding of molecular mechanisms driving diabetic kidney disease (DKD) is limited, partly due to the complex structure of the kidney. To identify genes and signalling pathways involved in the progression of DKD, we compared kidney cortical versus glomerular transcriptome profiles in uninephrectomized (UNx) db/db mouse models of early-stage (UNx only) and advanced [UNxplus adeno-associated virus-mediated renin-1 overexpression (UNx-Renin)] DKD using RNAseq. Compared to normoglycemic db/m mice, db/db UNx and db/db UNx-Renin mice showed marked changes in their kidney cortical and glomerular gene expression profiles. UNx-Renin mice displayed more marked perturbations in gene components associated with the activation of the immune system and enhanced extracellular matrix remodelling, supporting histological hallmarks of progressive DKD in this model. Single-nucleus RNAseq enabled the linking of transcriptome profiles to specific kidney cell types. In conclusion, integration of RNAseq at the cortical, glomerular and single-nucleus level provides an enhanced resolution of molecular signalling pathways associated with disease progression in preclinical models of DKD, and may thus be advantageous for identifying novel therapeutic targets in DKD
    corecore